-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare-my script.py
223 lines (164 loc) · 7.77 KB
/
bikeshare-my script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
cities = ['chicago', 'new york city', 'washington']
while True:
city =input('Would you like to see data for Chicago, New York city, or Washington?').lower()
if city not in cities:
print('unexpected input')
else:
break
# TO DO: get user input for month (all, january, february, ... , june)
months=['all','january','february','march','april','may','june']
while True:
month = input('Which month - January, February, March, April, May, June or all?').lower()
if month not in months:
print('unexpected input')
else:
break
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
days=['all','monday','tuesday','wednesday','thursday','friday','saturday','sunday']
while True:
day=input('Which day - Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday or all?').lower()
if day not in days:
print('unexpected input')
else:
break
print('-'*40)
return city, month, day
####################################################################################################################3
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df1=pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df1['Start Time'] = pd.to_datetime(df1['Start Time'])
# extract month and day of week from Start Time to create new columns
df1['month'] = df1['Start Time'].dt.month
df1['day_of_week'] = df1['Start Time'].dt.strftime("%A")
# #######################################################
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df1 = df1[df1['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df1 = df1[df1['day_of_week'] == day.title()]
return df1
####################################################################################################################3
def time_stats(df1):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
months = ['January', 'February', 'March', 'April', 'May', 'June']
popular_month=df1['month'].mode()[0]
print('Most popular month is:{}'.format(months[popular_month-1]))
# TO DO: display the most common day of week
popular_day=df1['day_of_week'].mode()[0]
print('Most popular day is:{}'.format(popular_day))
# TO DO: display the most common start hour
df1['hour'] = df1['Start Time'].dt.hour
popular_hour = df1['hour'].mode()[0]
print('Most Popular Start Hour:{}'.format(popular_hour))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
####################################################################################################################3
def station_stats(df1):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
popular_StartStaion=df1['Start Station'].mode()[0]
print('most popular start station is:{}'.format(popular_StartStaion))
# TO DO: display most commonly used end station
popular_EndStation=df1 ['End Station'].mode()[0]
print('most popular end station is:{}.'.format(popular_EndStation))
# TO DO: display most frequent combination of start station and end station trip
most_frq_route= 'from' + df1['Start Station']+'to'+ df1 ['End Station']
print('most frequent combination of start station and end station trip is:{}'.format(most_frq_route.mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
####################################################################################################################3
def trip_duration_stats(df1):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
print('total travel time is:{}'.format(df1['Trip Duration'].sum()))
# TO DO: display mean travel time
print('average travel time is:{}'.format(df1['Trip Duration'].mean()))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
####################################################################################################################3
def user_stats(df1):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
print('Counts of user types:{}'.format(df1['User Type'].value_counts()))
# TO DO: Display counts of gender
if ('Gender' not in df1):
print('NO Data Available for Washington')
else:
print('Counts of gender:{}'.format(df1['Gender'].value_counts()))
# TO DO: Display earliest, most recent, and most common year of birth
if ('Gender' not in df1):
print('NO Data Available for Washington')
else:
print('earliest year is:{}'.format(df1['Birth Year'].max()))
print('most recent year is:{}'.format(df1['Birth Year'].min()))
print('most common year is:{}'.format(df1['Birth Year'].mode()[0]))
print("\nThis took %s seconds." % (time.time() - start_time))
####################################################################################################################3
def display_data(df1):
n=5
print(df1.head(n))
while True:
mesaage=input('Do You Want to See 5 Rows of Data? Enter yes or no. ').lower()
if mesaage =='no':
break
elif mesaage=='yes':
n+=5
print(df1.iloc[n - 5:n, :])
else:
print('unexpected input')
####################################################################################################################3
def main():
while True:
city, month, day = get_filters()
df1 = load_data(city, month, day)
time_stats(df1)
station_stats(df1)
trip_duration_stats(df1)
user_stats(df1)
display_data(df1)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()