diff --git a/04_data_science_tools.Rmd b/04_data_science_tools.Rmd index 733c368..07388f8 100644 --- a/04_data_science_tools.Rmd +++ b/04_data_science_tools.Rmd @@ -64,7 +64,7 @@ Jesse Sadler, [Excel vs R: A Brief Introduction to R (With examples using dplyr #### Categorical data -Emily Robinson, DataCamp course, [Categorical Data in the Tidyverse](https://www.datacamp.com/courses/categorical-data-in-the-tidyverse) +Emily Robinson, _Categorical data in the tidyverse_ {link to DataCamp course removed} #### Tidy text diff --git a/51_bayesian.Rmd b/51_bayesian.Rmd index 5940f09..8f89a9e 100644 --- a/51_bayesian.Rmd +++ b/51_bayesian.Rmd @@ -55,7 +55,7 @@ CRAN page: [rjags: Bayesian Graphical Models using MCMC](https://cran.r-project. **articles** -DataCamp course: [Bayesian modeling with `rjags`](https://www.datacamp.com/courses/bayesian-modeling-with-rjags) +Alicia Johnson: [Bayesian modeling with `rjags`] {link to DataCamp course removed} #### `tidybayes` diff --git a/52_machine_learning.Rmd b/52_machine_learning.Rmd index 90c0274..0627b89 100644 --- a/52_machine_learning.Rmd +++ b/52_machine_learning.Rmd @@ -42,7 +42,7 @@ David Smith, 2018-02-21, [Machine Learning in R with TensorFlow](http://blog.rev Coursera: [Practical Machine Learning](https://www.coursera.org/learn/practical-machine-learning) -DataCamp tutorial: Karlijn Willems, [Machine Learning in R for beginners](https://www.datacamp.com/community/tutorials/machine-learning-in-r) +Karlijn Willems, [Machine Learning in R for beginners] {link to DataCamp course removed} Jason Brownlee, 2016-02-23, [Your First Machine Learning Project in R Step-By-Step (tutorial and template for future projects)](https://machinelearningmastery.com/machine-learning-in-r-step-by-step/) diff --git a/index.Rmd b/index.Rmd index 9a66359..b32654e 100644 --- a/index.Rmd +++ b/index.Rmd @@ -14,7 +14,7 @@ description: "A modest and very incomplete listing of resources for tackling dat # Preface {-} -_Draft, version 2_ +_Draft, version 3_ This book grew out of my evergrowing collection of reference materials that was saved as an expanding array of markdown files in a github repo. By assembling it as a book, I hope that it will be more accessible and useful to other R users.