-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
187 lines (152 loc) · 6.12 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import logging
import torch
import os
import sys
import numpy as np
from typing import Dict
import wandb
import datasets
import transformers
from transformers import set_seed, Trainer, EarlyStoppingCallback
from transformers.trainer_utils import get_last_checkpoint
from arguments import get_args
from tasks.utils import *
logger = logging.getLogger(__name__)
def train(trainer, resume_from_checkpoint=None, last_checkpoint=None):
checkpoint = None
if resume_from_checkpoint is not None:
checkpoint = resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
trainer.log_best_metrics()
def evaluate(trainer):
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def predict(trainer, predict_dataset=None):
if predict_dataset is None:
logger.info("No dataset is available for testing")
return
elif isinstance(predict_dataset, dict):
for dataset_name, d in predict_dataset.items():
logger.info("*** Predict: %s ***" % dataset_name)
predictions, labels, metrics = trainer.predict(
d, metric_key_prefix="predict"
)
predictions = np.argmax(predictions, axis=2)
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
for k, v in metrics.items():
wandb.run.summary[k] = v
return metrics
else:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(
predict_dataset, metric_key_prefix="predict"
)
predictions = np.argmax(predictions, axis=0)
print(metrics)
# for k, v in metrics.items():
# wandb.run.summary[k] = v
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
return metrics
def main():
torch.autograd.set_detect_anomaly(True)
args = get_args()
_, data_args, training_args, _ = args
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
dataset_name = data_args.task_name.lower()
if dataset_name == "superglue":
assert data_args.dataset_name.lower() in SUPERGLUE_DATASETS
from tasks.superglue.get_trainer import get_trainer
elif dataset_name == "glue":
assert data_args.dataset_name.lower() in GLUE_DATASETS
from tasks.glue.get_trainer import get_trainer
elif dataset_name == "hyperpartisan":
from tasks.hyperpartisan.get_trainer import get_trainer
elif dataset_name == "arxiv":
from tasks.arxiv.get_trainer import get_trainer
elif dataset_name == "wikihop":
from tasks.wikihop.get_trainer import get_trainer
elif dataset_name == "newsgroups":
from tasks.newsgroups.get_trainer import get_trainer
else:
print(dataset_name)
raise NotImplementedError(
"Task {} is not implemented. Please choose a dataset from: {}".format(
data_args.task_name, ", ".join(DATASETS)
)
)
set_seed(training_args.seed)
# disable annoying longformer logs
use_wandb = False
logging.getLogger("transformers.models.longformer.modeling_longformer").setLevel(logging.WARNING)
if "wandb" in training_args.report_to:
import wandb
use_wandb = True
os.environ["WANDB_MODE"] = "online"
entity, project = os.environ["WANDB_PROJECT_NAME"].split("/")
wandb.init(
project=project,
entity=entity,
name=os.environ["WANDB_NAME"],
config={
"lineage": os.environ["LINEAGE"],
},
)
trainer, predict_dataset = get_trainer(args, use_wandb=use_wandb)
# Early stopping
if data_args.early_stopping_patience >= 0:
trainer.add_callback(EarlyStoppingCallback(
early_stopping_patience=data_args.early_stopping_patience))
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
if training_args.do_train:
train(trainer, training_args.resume_from_checkpoint, last_checkpoint)
if training_args.do_eval:
evaluate(trainer)
if training_args.do_predict:
predict(trainer, predict_dataset)
if __name__ == "__main__":
main()