-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.bib
979 lines (916 loc) · 116 KB
/
main.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
@article{the_darkside_collaboration_darkside-50_2018,
title = {{DarkSide}-50 532-day {Dark} {Matter} {Search} with {Low}-{Radioactivity} {Argon}},
url = {http://arxiv.org/abs/1802.07198},
abstract = {The DarkSide-50 direct-detection dark matter experiment is a dual-phase argon time projection chamber operating at Laboratori Nazionali del Gran Sasso. This paper reports on the blind analysis and spin-independent dark matter-nucleon coupling results from a 532.4 live-days exposure, using a target of low-radioactivity argon extracted from underground sources. The background-free result in the dark matter selection box gave no evidence for dark matter. The present blind analysis sets a 90\% C.L. upper limit on the dark matter-nucleon spin-independent cross section of 1.1E-44 cm{\textasciicircum}2 (3.8E-44 cm{\textasciicircum}2, 3.4E-43 cm{\textasciicircum}2) for a WIMP mass of 100 GeV/c{\textasciicircum}2 (1 TeV/c{\textasciicircum}2, 10 TeV/c{\textasciicircum}2).},
urldate = {2018-07-15},
journal = {arXiv:1802.07198 [astro-ph]},
author = {The DarkSide Collaboration and Agnes, P. and Albuquerque, I. F. M. and Alexander, T. and Alton, A. K. and Araujo, G. R. and Ave, M. P. and Back, H. O. and Baldin, B. and Batignani, G. and Biery, K. and Bocci, V. and Bonfini, G. and Bonivento, W. and Bottino, B. and Budano, F. and Bussino, S. and Cadeddu, M. and Cadoni, M. and Calaprice, F. and Caminata, A. and Canci, N. and Candela, A. and Caravati, M. and Cariello, M. and Carlini, M. and Carpinelli, M. and Catalanotti, S. and Cataudella, V. and Cavalcante, P. and Cavuoti, S. and Chepurnov, A. and Cicalò, C. and Cocco, A. G. and Covone, G. and D'Angelo, D. and D'Incecco, M. and D'Urso, D. and Davini, S. and De Candia, A. and De Cecco, S. and De Deo, M. and De Filippis, G. and De Rosa, G. and De Vincenzi, M. and Derbin, A. V. and Devoto, A. and Di Eusanio, F. and Di Pietro, G. and Dionisi, C. and Downing, M. and Edkins, E. and Empl, A. and Fan, A. and Fiorillo, G. and Fomenko, K. and Franco, D. and Gabriele, F. and Galbiati, C. and Giagu, S. and Giganti, C. and Giovanetti, G. K. and Gorchakov, O. and Goretti, A. M. and Granato, F. and Gromov, M. and Guan, M. and Guardincerri, Y. and Gulino, M. and Hackett, B. R. and Hassanshahi, M. H. and Herner, K. and Hosseini, B. and Hughes, D. and Humble, P. and Hungerford, E. V. and Ianni, An and Ippolito, V. and James, I. and Johnson, T. N. and Keeter, K. and Kendziora, C. L. and Kochanek, I. and Koh, G. and Korablev, D. and Korga, G. and Kubankin, A. and Kuss, M. and La Commara, M. and Lai, M. and Li, X. and Lissia, M. and Longo, G. and Ma, Y. and Machado, A. A. and Machulin, I. N. and Mandarano, A. and Mapelli, L. and Mari, S. M. and Maricic, J. and Martoff, C. J. and Messina, A. and Meyers, P. D. and Milincic, R. and Monte, A. and Morrocchi, M. and Mount, B. J. and Muratova, V. N. and Musico, P. and Agasson, A. Navrer and Nozdrina, A. O. and Oleinik, A. and Orsini, M. and Ortica, F. and Pagani, L. and Pallavicini, M. and Pandola, L. and Pantic, E. and Paoloni, E. and Pelczar, K. and Pelliccia, N. and Pocar, A. and Pordes, S. and Poudel, S. S. and Pugachev, D. A. and Qian, H. and Ragusa, F. and Razeti, M. and Razeto, A. and Reinhold, B. and Renshaw, A. L. and Rescigno, M. and Romani, A. and Rossi, B. and Rossi, N. and Sablone, D. and Samoylov, O. and Sands, W. and Sanfilippo, S. and Savarese, C. and Schlitzer, B. and Segreto, E. and Semenov, D. A. and Shchagin, A. and Sheshukov, A. and Singh, P. N. and Skorokhvatov, M. D. and Smirnov, O. and Sotnikov, A. and Stanford, C. and Stracka, S. and Suvorov, Y. and Tartaglia, R. and Testera, G. and Tonazzo, A. and Trinchese, P. and Unzhakov, E. V. and Verducci, M. and Vishneva, A. and Vogelaar, B. and Wada, M. and Waldrop, T. J. and Wang, H. and Wang, Y. and Watson, A. W. and Westerdale, S. and Wojcik, M. M. and Xiang, X. and Xiao, X. and Yang, C. and Ye, Z. and Zhu, C. and Zuzel, G.},
month = feb,
year = {2018},
note = {arXiv: 1802.07198},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
file = {arXiv\:1802.07198 PDF:/home/moritz/Zotero/storage/IFNFNJKC/The DarkSide Collaboration et al. - 2018 - DarkSide-50 532-day Dark Matter Search with Low-Ra.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/Y3WEQGBX/1802.html:text/html}
}
@article{benetti_measurement_2007,
title = {Measurement of the specific activity of ar-39 in natural argon},
volume = {A574},
doi = {10.1016/j.nima.2007.01.106},
journal = {Nucl. Instrum. Meth.},
author = {Benetti, P. and {others}},
year = {2007},
pages = {83--88}
}
@article{agnes_results_2016,
title = {Results from the first use of low radioactivity argon in a dark matter search},
volume = {93},
url = {https://link.aps.org/doi/10.1103/PhysRevD.93.081101},
doi = {10.1103/PhysRevD.93.081101},
number = {8},
journal = {Phys. Rev. D},
author = {Agnes, P. and Agostino, L. and Albuquerque, I. F. M. and Alexander, T. and Alton, A. K. and Arisaka, K. and Back, H. O. and Baldin, B. and Biery, K. and Bonfini, G. and Bossa, M. and Bottino, B. and Brigatti, A. and Brodsky, J. and Budano, F. and Bussino, S. and Cadeddu, M. and Cadonati, L. and Cadoni, M. and Calaprice, F. and Canci, N. and Candela, A. and Cao, H. and Cariello, M. and Carlini, M. and Catalanotti, S. and Cavalcante, P. and Chepurnov, A. and Cocco, A. G. and Covone, G. and Crippa, L. and D'Angelo, D. and D'Incecco, M. and Davini, S. and De Cecco, S. and De Deo, M. and De Vincenzi, M. and Derbin, A. and Devoto, A. and Di Eusanio, F. and Di Pietro, G. and Edkins, E. and Empl, A. and Fan, A. and Fiorillo, G. and Fomenko, K. and Forster, G. and Franco, D. and Gabriele, F. and Galbiati, C. and Giganti, C. and Goretti, A. M. and Granato, F. and Grandi, L. and Gromov, M. and Guan, M. and Guardincerri, Y. and Hackett, B. R. and Hall, J. and Herner, K. and Humble, P. H. and Hungerford, E. V. and Ianni, Al. and Ianni, An. and James, I. and Jollet, C. and Keeter, K. and Kendziora, C. L. and Kobychev, V. and Koh, G. and Korablev, D. and Korga, G. and Kubankin, A. and Li, X. and Lissia, M. and Lombardi, P. and Luitz, S. and Ma, Y. and Machulin, I. N. and Mandarano, A. and Mari, S. M. and Maricic, J. and Marini, L. and Martoff, C. J. and Meregaglia, A. and Meyers, P. D. and Miletic, T. and Milincic, R. and Montanari, D. and Monte, A. and Montuschi, M. and Monzani, M. and Mosteiro, P. and Mount, B. J. and Muratova, V. N. and Musico, P. and Napolitano, J. and Nelson, A. and Odrowski, S. and Orsini, M. and Ortica, F. and Pagani, L. and Pallavicini, M. and Pantic, E. and Parmeggiano, S. and Pelczar, K. and Pelliccia, N. and Perasso, S. and Pocar, A. and Pordes, S. and Pugachev, D. A. and Qian, H. and Randle, K. and Ranucci, G. and Razeto, A. and Reinhold, B. and Renshaw, A. L. and Romani, A. and Rossi, B. and Rossi, N. and Rountree, D. and Sablone, D. and Saggese, P. and Saldanha, R. and Sands, W. and Sangiorgio, S. and Savarese, C. and Segreto, E. and Semenov, D. A. and Shields, E. and Singh, P. N. and Skorokhvatov, M. D. and Smirnov, O. and Sotnikov, A. and Stanford, C. and Suvorov, Y. and Tartaglia, R. and Tatarowicz, J. and Testera, G. and Tonazzo, A. and Trinchese, P. and Unzhakov, E. V. and Vishneva, A. and Vogelaar, B. and Wada, M. and Walker, S. and Wang, H. and Wang, Y. and Watson, A. W. and Westerdale, S. and Wilhelmi, J. and Wojcik, M. M. and Xiang, X. and Xu, J. and Yang, C. and Yoo, J. and Zavatarelli, S. and Zec, A. and Zhong, W. and Zhu, C. and Zuzel, G.},
month = apr,
year = {2016},
pages = {081101}
}
@article{cameron_nuclear_2012,
title = {Nuclear {Data} {Sheets} for {A} = 37},
volume = {113},
issn = {0090-3752},
url = {https://scholars.opb.msu.edu/en/publications/nuclear-data-sheets-for-a-37},
doi = {10.1016/j.nds.2012.02.001},
language = {English (US)},
number = {2},
urldate = {2018-07-19},
journal = {NUCL.DATA SHEETS SER. B, NUCL.DATA SHEETS SER.B, NUCL.DATA SHEETS SER.B.},
author = {Cameron, John and Chen, Jun and Singh, Balraj and Nica, Ninel},
month = feb,
year = {2012},
pages = {365--514},
file = {Snapshot:/home/moritz/Zotero/storage/QI6A5SAL/nuclear-data-sheets-for-a-37.html:text/html}
}
@article{singh_nuclear_2006,
title = {Nuclear {Data} {Sheets} for {A} = 39},
volume = {107},
issn = {0090-3752},
url = {http://www.sciencedirect.com/science/article/pii/S0090375206000020},
doi = {10.1016/j.nds.2006.01.001},
abstract = {Nuclear spectroscopic information for the known nuclides of mass 39 (Mg,Al,Si,P,S,Cl,Ar,K,Ca,Sc,Ti) has been evaluated. The principal sources of the ‘adopted levels’ presented are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma–ray data, are based mostly on the original literature. There are no data available for the excited states in 39Mg, 39Al, 39Si and 39Ti.},
number = {2},
urldate = {2018-07-19},
journal = {Nuclear Data Sheets},
author = {Singh, Balraj and Cameron, John A.},
month = feb,
year = {2006},
pages = {225--354},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/UI2FPX82/S0090375206000020.html:text/html}
}
@article{abusaleem_nuclear_2014,
title = {Nuclear {Data} {Sheets} for {A}=228},
volume = {116},
issn = {0090-3752},
url = {http://www.sciencedirect.com/science/article/pii/S0090375214000118},
doi = {10.1016/j.nds.2014.01.002},
abstract = {The evaluated spectroscopic data are presented for known nuclides of mass 228 (Ac, At, Fr, Np, Pa, Pu, Ra, Rn, Th, and U). Excited states in 228At, 228Rn, 228Fr, 228Np, and 228Pu have not been identified as yet. Significant amounts of new data have been added since the last evaluation of A=228 nuclides. This work supersedes earlier full evaluations of A=228 published by 1997Ar08.},
urldate = {2018-07-19},
journal = {Nuclear Data Sheets},
author = {Abusaleem, Khalifeh},
month = feb,
year = {2014},
pages = {163--262},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/EWF9Y6BA/S0090375214000118.html:text/html}
}
@article{singh_nuclear_2014,
title = {Nuclear data sheets for {A} = 85},
volume = {116},
issn = {0090-3752},
url = {https://scholars.opb.msu.edu/en/publications/nuclear-data-sheets-for-a-85},
doi = {10.1016/j.nds.2014.01.001},
language = {English (US)},
number = {1},
urldate = {2018-07-19},
journal = {NUCL.DATA SHEETS SER. B, NUCL.DATA SHEETS SER.B, NUCL.DATA SHEETS SER.B.},
author = {Singh, Balraj and Chen, Jun},
year = {2014},
pages = {1--162},
file = {Snapshot:/home/moritz/Zotero/storage/3HNSWATZ/nuclear-data-sheets-for-a-85.html:text/html}
}
@article{benetti_measurement_2006,
title = {Measurement of the specific activity of {Ar}-39 in natural argon},
volume = {574},
doi = {10.1016/j.nima.2007.01.106},
abstract = {We report on the measurement of the specific activity of Ar-39 in natural argon. The measurement was performed with a 2.3-liter two-phase (liquid and gas) argon drift chamber. The detector was developed by the WARP Collaboration as a prototype detector for WIMP Dark Matter searches with argon as a target. The detector was operated for more than two years at Laboratori Nazionali del Gran Sasso, Italy, at a depth of 3,400 m w.e. The specific activity measured for Ar-39 is 1.01 +/- 0.02(stat) +/- 0.08(syst) Bq per kg of natural Ar.},
journal = {Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment},
author = {Benetti, P and Calaprice, Frank and Calligarich, E and Cambiaghi, Michela and Carbonara, F and Cavanna, Flavio and Cocco, Alfredo and Di Pompeo, Francesco and Ferrari, N and Fiorillo, Giuliana and Galbiati, C and Grandi, L and Mangano, G and Montanari, C and Pandola, Luciano and Rappoldi, A and L. Raselli, G and Roncadelli, M and Rossella, M and Zhao, Y},
month = apr,
year = {2006}
}
@article{cattadori_gerda_2012,
title = {{GERDA} {Status} {Report}: {Results} from {Commissioning}},
volume = {375},
issn = {1742-6596},
shorttitle = {{GERDA} {Status} {Report}},
url = {http://stacks.iop.org/1742-6596/375/i=4/a=042008},
doi = {10.1088/1742-6596/375/1/042008},
abstract = {In June 2010 GERDA, designed to search for neutrinoless double beta decay of 76 Ge, started the commissioning, with a pilot string of 3 non-enriched Ge detector. One year later 3 enr Gedetectors were added, and operated for 4 months. This contribution summarizes the first year of work, the updated evaluation of the setup background, the strategies we implemented to mitigate the most serious background source we faced with, i.e. 42 Ar- 42 K: the 42 Ar activity measured in the final quasi-field free configuration is 0.23 ± 0.03 cts/(kg.d) corresponding to 104 Bq/kg; this is assuming an homogeneous and isotropic distribution of the daugther nucleus, 42 K, around the detector array. The background index measured with the enr Ge 3-detector array is 0.045 +0.015 −0.011 cts/(keV-kg-y).},
language = {en},
number = {4},
urldate = {2018-07-20},
journal = {J. Phys.: Conf. Ser.},
author = {Cattadori, Carla Maria},
year = {2012},
pages = {042008},
file = {IOP Full Text PDF:/home/moritz/Zotero/storage/HCTQGYUW/Cattadori - 2012 - GERDA Status Report Results from Commissioning.pdf:application/pdf}
}
@article{chen_nuclear_2016,
title = {Nuclear {Data} {Sheets} for {A} = 42},
volume = {135},
issn = {0090-3752},
url = {http://www.sciencedirect.com/science/article/pii/S0090375216300126},
doi = {10.1016/j.nds.2016.06.001},
abstract = {The experimental data are evaluated for known nuclides of mass number A = 42 (Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr). Detailed evaluated level properties and related information are presented, including adopted values of level and γ–ray energies, decay data (energies, intensities and placement of radiations), and other spectroscopic data. This work supersedes earlier full evaluations of A = 42 published by B. Singh, J.A. Cameron – Nucl.Data Sheets 92, 1 (2001) and P.M. Endt – Nucl. Phys. A521, 1 (1990); Errata and Addenda Nucl. Phys. A529, 763 (1991); Errata Nucl. Phys. A564, 609 (1993) (also P.M. Endt – Nucl. Phys. A633, 1 (1998) update). No excited states are known in 42Al, 42P, 42V and 42Cr, and structure information for 42Si and 42S is quite limited. There are no decay schemes available for the decay of 42Al, 42Si, 42P, 42V and 42Cr, while the decay schemes of 42Cl and 42Ti are incomplete in view of scarcity of data, and large gap between their Q–values and the highest energy levels populated in corresponding daughter nuclei. Structures of 42Ca, 42K, 42Sc and 42Ar nuclides remain the most extensively studied via many different nuclear reactions and decays.},
urldate = {2018-07-20},
journal = {Nuclear Data Sheets},
author = {Chen, Jun and Singh, Balraj},
month = jul,
year = {2016},
pages = {1--192},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/ZZII6S8U/S0090375216300126.html:text/html}
}
@article{kondev_nuclear_2008,
title = {Nuclear {Data} {Sheets} for {A} = 206},
volume = {109},
issn = {0090-3752},
url = {http://www.sciencedirect.com/science/article/pii/S0090375208000380},
doi = {10.1016/j.nds.2008.05.002},
abstract = {Evaluated nuclear structure and decay data for all nuclei within the A = 206 mass chain are presented. The experimental data are evaluated and recommended best values for level and gamma-ray energies, quantum numbers, lifetimes, gamma-ray intensities and other nuclear properties are presented. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by E. Browne (1999Br39), published in Nuclear Data Sheets88, 29 (1999).},
number = {6},
urldate = {2018-07-20},
journal = {Nuclear Data Sheets},
author = {Kondev, F. G.},
month = jun,
year = {2008},
pages = {1527--1654},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/ARUHXWXS/S0090375208000380.html:text/html}
}
@article{lubashevskiy_mitigation_2018,
title = {Mitigation of \${\textasciicircum}\{42\}\${Ar}/\${\textasciicircum}\{42\}\${K} background for the {GERDA} {Phase} {II} experiment},
volume = {78},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-017-5499-9},
doi = {10.1140/epjc/s10052-017-5499-9},
abstract = {Background coming from the 4242{\textasciicircum}\{42\}Ar decay chain is considered to be one of the most relevant for the Gerda experiment, which searches for the neutrinoless double beta decay of 7676{\textasciicircum}\{76\}Ge. The sensitivity strongly relies on the absence of background around the Q-value of the decay. Background coming from 4242{\textasciicircum}\{42\}K, a progeny of 4242{\textasciicircum}\{42\}Ar, can contribute to that background via electrons from the continuous spectrum with an endpoint at 3.5 MeV. Research and development on the suppression methods targeting this source of background were performed at the low-background test facility LArGe . It was demonstrated that by reducing 4242{\textasciicircum}\{42\}K ion collection on the surfaces of the broad energy germanium detectors in combination with pulse shape discrimination techniques and an argon scintillation veto, it is possible to suppress 4242{\textasciicircum}\{42\}K background by three orders of magnitude. This is sufficient for Phase II of the Gerda experiment.},
language = {en},
number = {1},
urldate = {2018-07-21},
journal = {Eur. Phys. J. C},
author = {Lubashevskiy, A. and Agostini, M. and Budjáš, D. and Gangapshev, A. and Gusev, K. and Heisel, M. and Klimenko, A. and Lazzaro, A. and Lehnert, B. and Pelczar, K. and Schönert, S. and Smolnikov, A. and Walter, M. and Zuzel, G.},
month = jan,
year = {2018},
pages = {15},
file = {Full Text PDF:/home/moritz/Zotero/storage/KMLF2HK7/Lubashevskiy et al. - 2018 - Mitigation of \$\$^ \$\$Ar\$\$^ \$\$K background for th.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/V9TLQR75/10.html:text/html}
}
@article{collaboration_upgrade_2018,
title = {Upgrade for {Phase} {II} of the {Gerda} experiment},
volume = {78},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-018-5812-2},
doi = {10.1140/epjc/s10052-018-5812-2},
abstract = {The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kg year{\textbackslash}hbox \{100 kg\}{\textasciitilde}{\textbackslash}hbox \{year\}). It will reach thereby a half-life sensitivity of more than 102610{\textasciicircum}\{26\} year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.},
language = {en},
number = {5},
urldate = {2018-07-21},
journal = {Eur. Phys. J. C},
author = {Collaboration, Gerda and Agostini, M. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Baudis, L. and Bauer, C. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and D’Andrea, V. and Demidova, E. V. and Marco, N. Di and Domula, A. and Doroshkevich, E. and Egorov, V. and Falkenstein, R. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hakenmüller, J. and Hegai, A. and Heisel, M. and Hemmer, S. and Hiller, R. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kazalov, V. and Kermaïdic, Y. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Kish, A. and Klimenko, A. and Kneißl, R. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Medinaceli, E. and Miloradovic, M. and Mingazheva, R. and Misiaszek, M. and Moseev, P. and Nemchenok, I. and Nisi, S. and Panas, K. and Pandola, L. and Pelczar, K. and Pullia, A. and Ransom, C. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salamida, F. and Salathe, M. and Schmitt, C. and Schneider, B. and Schönert, S. and Schreiner, J. and Schütz, A.-K. and Schulz, O. and Schwingenheuer, B. and Selivanenko, O. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Vanhoefer, L. and Vasenko, A. A. and Veresnikova, A. and Sturm, K. von and Wagner, V. and Wegmann, A. and Wester, T. and Wiesinger, C. and Wojcik, M. and Yanovich, E. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zsigmond, A. J. and Zuber, K. and Zuzel, G.},
month = may,
year = {2018},
pages = {388},
file = {Full Text PDF:/home/moritz/Zotero/storage/A8Q58S5V/Collaboration et al. - 2018 - Upgrade for Phase II of the Emphasis Type=SmallC.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/WNSWJJ3R/10.html:text/html}
}
@phdthesis{olsen_improvements_nodate,
title = {Improvements to the resolution and efficiency of the {DEAP}-3600 dark matter detector and their effects on background studies},
language = {en},
school = {University of Alberta},
author = {Olsen, Kevin S},
file = {Olsen - Improvements to the resolution and efficiency of t.pdf:/home/moritz/Zotero/storage/ZJIWVJYU/Olsen - Improvements to the resolution and efficiency of t.pdf:application/pdf}
}
@article{back_first_2012,
title = {First {Commissioning} of a {Cryogenic} {Distillation} {Column} for {Low} {Radioactivity} {Underground} {Argon}},
url = {http://arxiv.org/abs/1204.6061},
abstract = {We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9\% pure. After running in a batch mode, the argon purity was increased to 99.95\%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70\% and 81\%, at an argon production rate of 0.84-0.98 kg/day.},
language = {en},
urldate = {2018-07-22},
journal = {arXiv:1204.6061 [astro-ph, physics:hep-ex]},
author = {Back, H. O. and Alexander, T. and Alton, A. and Condon, C. and de Haas, E. and Galbiati, C. and Goretti, A. and Hohmann, T. and Ianni, An and Kendziora, C. and Loer, B. and Montanari, D. and Mosteiro, P. and Pordes, S.},
month = apr,
year = {2012},
note = {arXiv: 1204.6061},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, High Energy Physics - Experiment},
file = {Back et al. - 2012 - First Commissioning of a Cryogenic Distillation Co.pdf:/home/moritz/Zotero/storage/FPHRJGJA/Back et al. - 2012 - First Commissioning of a Cryogenic Distillation Co.pdf:application/pdf}
}
@article{back_first_2012-1,
title = {First {Large} {Scale} {Production} of {Low} {Radioactivity} {Argon} {From} {Underground} {Sources}},
url = {http://arxiv.org/abs/1204.6024},
abstract = {We report on the first large-scale production of low radioactivity argon from underground gas wells. Low radioactivity argon is of general interest, in particular for the construction of large scale WIMP dark matter searches and detectors of reactor neutrinos for non-proliferation efforts. Atmospheric argon has an activity of about 1 Bq/kg from the decays of 39Ar; the concentration of 39Ar in the underground argon we are collecting is at least a factor of 100 lower than this value. The argon is collected from a stream of gas from a CO2 well in southwestern Colorado with a Vacuum Pressure Swing Adsorption (VPSA) plant. The gas from the well contains argon at a concentration of 400-600 ppm, and the VPSA plant produces an output stream with an argon concentration at the level of 30,000-50,000 ppm (3-5\%) in a single pass. This gas is sent for further processing to Fermilab where it is purified by cryogenic distillation. The argon production rate is presently 0.5 kg/day.},
urldate = {2018-07-22},
journal = {arXiv:1204.6024 [astro-ph, physics:hep-ex]},
author = {Back, H. O. and Calaprice, F. and Condon, C. and de Haas, E. and Ford, R. and Galbiati, C. and Goretti, A. and Hohman, T. and Inanni, An and Loer, B. and Montanari, D. and Nelson, A. and Pocar, A.},
month = apr,
year = {2012},
note = {arXiv: 1204.6024},
keywords = {Astrophysics - Instrumentation and Methods for Astrophysics, High Energy Physics - Experiment},
file = {arXiv\:1204.6024 PDF:/home/moritz/Zotero/storage/QQPWZ54B/Back et al. - 2012 - First Large Scale Production of Low Radioactivity .pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/6TUKM69J/1204.html:text/html}
}
@article{collaboration_background-free_2017,
title = {Background-free search for neutrinoless double-β decay of 76Ge with {GERDA}},
volume = {544},
copyright = {2017 Nature Publishing Group},
issn = {1476-4687},
url = {https://www.nature.com/articles/nature21717},
doi = {10.1038/nature21717},
abstract = {Many extensions of the Standard Model of particle physics explain the dominance of matter over antimatter in our Universe by neutrinos being their own antiparticles. This would imply the existence of neutrinoless double-β decay, which is an extremely rare lepton-number-violating radioactive decay process whose detection requires the utmost background suppression. Among the programmes that aim to detect this decay, the GERDA Collaboration is searching for neutrinoless double-β decay of 76Ge by operating bare detectors, made of germanium with an enriched 76Ge fraction, in liquid argon. After having completed Phase I of data taking, we have recently launched Phase II. Here we report that in GERDA Phase II we have achieved a background level of approximately 10−3 counts keV−1 kg−1 yr−1. This implies that the experiment is background-free, even when increasing the exposure up to design level. This is achieved by use of an active veto system, superior germanium detector energy resolution and improved background recognition of our new detectors. No signal of neutrinoless double-β decay was found when Phase I and Phase II data were combined, and we deduce a lower-limit half-life of 5.3 × 1025 years at the 90 per cent confidence level. Our half-life sensitivity of 4.0 × 1025 years is competitive with the best experiments that use a substantially larger isotope mass. The potential of an essentially background-free search for neutrinoless double-β decay will facilitate a larger germanium experiment with sensitivity levels that will bring us closer to clarifying whether neutrinos are their own antiparticles.},
language = {en},
number = {7648},
urldate = {2018-07-23},
journal = {Nature},
author = {Collaboration, The GERDA and Agostini, M. and Allardt, M. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Baudis, L. and Bauer, C. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and D’Andrea, V. and Demidova, E. V. and Marco, N. Di and Vacri, A. di and Domula, A. and Doroshkevich, E. and Egorov, V. and Falkenstein, R. and Fedorova, O. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gooch, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hakenmüller, J. and Hegai, A. and Heisel, M. and Hemmer, S. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kazalov, V. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Kish, A. and Klimenko, A. and Kneißl, R. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Medinaceli, E. and Miloradovic, M. and Mingazheva, R. and Misiaszek, M. and Moseev, P. and Nemchenok, I. and Palioselitis, D. and Panas, K. and Pandola, L. and Pelczar, K. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salamida, F. and Salathe, M. and Schmitt, C. and Schneider, B. and Schönert, S. and Schreiner, J. and Schulz, O. and Schütz, A.-K. and Schwingenheuer, B. and Selivanenko, O. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Vanhoefer, L. and Vasenko, A. A. and Veresnikova, A. and Sturm, K. von and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wiesinger, C. and Wojcik, M. and Yanovich, E. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = apr,
year = {2017},
pages = {47--52},
file = {Snapshot:/home/moritz/Zotero/storage/BZX8K6BZ/nature21717.html:text/html}
}
@article{gerda_collaboration_improved_2018,
title = {Improved {Limit} on {Neutrinoless} {Double}-beta {Decay} of 76Ge from {GERDA} {Phase} {II}},
volume = {120},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.120.132503},
doi = {10.1103/PhysRevLett.120.132503},
abstract = {The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of 76Ge (76Ge→76Se+2e−) operating bare Ge diodes with an enriched 76Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0+0.6−0.4×10−3 counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90\% C.L. lower limit for the half-life of 8.0×1025 yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×1025 yr.},
number = {13},
urldate = {2018-07-23},
journal = {Phys. Rev. Lett.},
author = {{GERDA Collaboration} and Agostini, M. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Baudis, L. and Bauer, C. and Bellotti, E. and Belogurov, S. and Bettini, A. and Bezrukov, L. and Biernat, J. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and Comellato, T. and D’Andrea, V. and Demidova, E. V. and Di Marco, N. and Domula, A. and Doroshkevich, E. and Egorov, V. and Falkenstein, R. and Gangapshev, A. and Garfagnini, A. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hakenmüller, J. and Hegai, A. and Heisel, M. and Hemmer, S. and Hiller, R. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Janicskó Csáthy, J. and Jochum, J. and Junker, M. and Kazalov, V. and Kermaidic, Y. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Kish, A. and Klimenko, A. and Kneißl, R. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Miloradovic, M. and Mingazheva, R. and Misiaszek, M. and Moseev, P. and Nemchenok, I. and Panas, K. and Pandola, L. and Pelczar, K. and Pertoldi, L. and Pullia, A. and Ransom, C. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salamida, F. and Schmitt, C. and Schneider, B. and Schönert, S. and Schütz, A-K. and Schulz, O. and Schwingenheuer, B. and Selivanenko, O. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Vanhoefer, L. and Vasenko, A. A. and Veresnikova, A. and von Sturm, K. and Wagner, V. and Wegmann, A. and Wester, T. and Wiesinger, C. and Wojcik, M. and Yanovich, E. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zschocke, A. and Zsigmond, A. J. and Zuber, K. and Zuzel, G.},
month = mar,
year = {2018},
pages = {132503},
file = {APS Snapshot:/home/moritz/Zotero/storage/EBJZCWBC/PhysRevLett.120.html:text/html}
}
@article{elliott_double_2002,
title = {Double {Beta} {Decay}},
volume = {52},
url = {https://doi.org/10.1146/annurev.nucl.52.050102.090641},
doi = {10.1146/annurev.nucl.52.050102.090641},
abstract = {The motivation, present status, and future plans of the search for ββ(0ν) decay are reviewed. Recent observations of neutrino oscillations encourage the hope that ββ(0ν) decay corresponding to the neutrino mass scale suggested by oscillations, mν ≈ 50 meV, actually exists. The challenges to achieve the sensitivity corresponding to this mass scale, and plans to overcome them, are described.},
number = {1},
urldate = {2018-07-24},
journal = {Annual Review of Nuclear and Particle Science},
author = {Elliott, Steven R. and Vogel, Petr},
year = {2002},
pages = {115--151}
}
@article{duerr_quantitative_2011,
title = {On the {Quantitative} {Impact} of the {Schechter}-{Valle} {Theorem}},
volume = {2011},
issn = {1029-8479},
url = {http://arxiv.org/abs/1105.0901},
doi = {10.1007/JHEP06(2011)091},
abstract = {We evaluate the Schechter-Valle (Black Box) theorem quantitatively by considering the most general Lorentz invariant Lagrangian consisting of point-like operators for neutrinoless double beta decay. It is well known that the Black Box operators induce Majorana neutrino masses at four-loop level. This warrants the statement that an observation of neutrinoless double beta decay guarantees the Majorana nature of neutrinos. We calculate these radiatively generated masses and find that they are many orders of magnitude smaller than the observed neutrino masses and splittings. Thus, some lepton number violating New Physics (which may at tree-level not be related to neutrino masses) may induce Black Box operators which can explain an observed rate of neutrinoless double beta decay. Although these operators guarantee finite Majorana neutrino masses, the smallness of the Black Box contributions implies that other neutrino mass terms (Dirac or Majorana) must exist. If neutrino masses have a significant Majorana contribution then this will become the dominant part of the Black Box operator. However, neutrinos might also be predominantly Dirac particles, while other lepton number violating New Physics dominates neutrinoless double beta decay. Translating an observed rate of neutrinoless double beta decay into neutrino masses would then be completely misleading. Although the principal statement of the Schechter-Valle theorem remains valid, we conclude that the Black Box diagram itself generates radiatively only mass terms which are many orders of magnitude too small to explain neutrino masses. Therefore, other operators must give the leading contributions to neutrino masses, which could be of Dirac or Majorana nature.},
number = {6},
urldate = {2018-07-24},
journal = {Journal of High Energy Physics},
author = {Duerr, Michael and Lindner, Manfred and Merle, Alexander},
month = jun,
year = {2011},
note = {arXiv: 1105.0901},
keywords = {High Energy Physics - Experiment, High Energy Physics - Phenomenology},
file = {arXiv\:1105.0901 PDF:/home/moritz/Zotero/storage/N6HKZBSC/Duerr et al. - 2011 - On the Quantitative Impact of the Schechter-Valle .pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/N8EE94BW/1105.html:text/html}
}
@article{gerda_collaboration_results_2013,
title = {Results on {Neutrinoless} {Double}-beta {Decay} of 76Ge from {Phase} {I} of the {GERDA} {Experiment}},
volume = {111},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.111.122503},
doi = {10.1103/PhysRevLett.111.122503},
abstract = {Neutrinoless double beta decay is a process that violates lepton number conservation. It is predicted to occur in extensions of the standard model of particle physics. This Letter reports the results from phase I of the Germanium Detector Array (GERDA) experiment at the Gran Sasso Laboratory (Italy) searching for neutrinoless double beta decay of the isotope 76Ge. Data considered in the present analysis have been collected between November 2011 and May 2013 with a total exposure of 21.6 kg yr. A blind analysis is performed. The background index is about 1×10−2 counts/(keV kg yr) after pulse shape discrimination. No signal is observed and a lower limit is derived for the half-life of neutrinoless double beta decay of 76Ge, T0ν1/2{\textgreater}2.1×1025 yr (90\% C.L.). The combination with the results from the previous experiments with 76Ge yields T0ν1/2{\textgreater}3.0×1025 yr (90\% C.L.).},
number = {12},
urldate = {2018-07-24},
journal = {Phys. Rev. Lett.},
author = {{GERDA Collaboration} and Agostini, M. and Allardt, M. and Andreotti, E. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Barnabé Heider, M. and Barros, N. and Baudis, L. and Bauer, C. and Becerici-Schmidt, N. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Brudanin, V. and Brugnera, R. and Budjáš, D. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and Cossavella, F. and Demidova, E. V. and Domula, A. and Egorov, V. and Falkenstein, R. and Ferella, A. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gotti, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Guthikonda, K. K. and Hampel, W. and Hegai, A. and Heisel, M. and Hemmer, S. and Heusser, G. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Janicskó Csáthy, J. and Jochum, J. and Junker, M. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Klimenko, A. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Liu, X. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Machado, A. A. and Majorovits, B. and Maneschg, W. and Misiaszek, M. and Nemchenok, I. and Nisi, S. and O’Shaughnessy, C. and Pandola, L. and Pelczar, K. and Pessina, G. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salathe, M. and Schmitt, C. and Schreiner, J. and Schulz, O. and Schwingenheuer, B. and Schönert, S. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Strecker, H. and Tarka, M. and Ur, C. A. and Vasenko, A. A. and Volynets, O. and von Sturm, K. and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wojcik, M. and Yanovich, E. and Zavarise, P. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = sep,
year = {2013},
pages = {122503},
file = {APS Snapshot:/home/moritz/Zotero/storage/PSFS8Q95/PhysRevLett.111.html:text/html}
}
@article{agostini_background_2014,
title = {The background in the $0\nu\beta\beta$ experiment {Gerda}},
volume = {74},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-014-2764-z},
doi = {10.1140/epjc/s10052-014-2764-z},
abstract = {The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta (0νββ0νββ0{\textbackslash}nu {\textbackslash}beta {\textbackslash}beta ) decay of 7676{\textasciicircum}\{76\}Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the QββQββQ\_\{{\textbackslash}beta {\textbackslash}beta \} value of the decay. To avoid bias in the signal search, the present analysis does not consider all those events, that fall in a 40 keV wide region centered around QββQββQ\_\{{\textbackslash}beta {\textbackslash}beta \}. The main parameters needed for the 0νββ0νββ0{\textbackslash}nu {\textbackslash}beta {\textbackslash}beta analysis are described. A background model was developed to describe the observed energy spectrum. The model contains several contributions, that are expected on the basis of material screening or that are established by the observation of characteristic structures in the energy spectrum. The model predicts a flat energy spectrum for the blinding window around QββQββQ\_\{{\textbackslash}beta {\textbackslash}beta \} with a background index ranging from 17.6 to 23.8 ××{\textbackslash}times 10−310−310{\textasciicircum}\{-3\} cts/(keV kg yr). A part of the data not considered before has been used to test if the predictions of the background model are consistent. The observed number of events in this energy region is consistent with the background model. The background at QββQββQ\_\{{\textbackslash}beta {\textbackslash}beta \} is dominated by close sources, mainly due to 4242{\textasciicircum}\{42\}K, 214214{\textasciicircum}\{214\}Bi, 228228{\textasciicircum}\{228\}Th, 6060{\textasciicircum}\{60\}Co and αα{\textbackslash}alpha emitting isotopes from the 226226{\textasciicircum}\{226\}Ra decay chain. The individual fractions depend on the assumed locations of the contaminants. It is shown, that after removal of the known γγ{\textbackslash}gamma peaks, the energy spectrum can be fitted in an energy range of 200 keV around QββQββQ\_\{{\textbackslash}beta {\textbackslash}beta \} with a constant background. This gives a background index consistent with the full model and uncertainties of the same size.},
language = {en},
number = {4},
urldate = {2018-07-25},
journal = {Eur. Phys. J. C},
author = {Agostini, M. and Allardt, M. and Andreotti, E. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Heider, M. Barnabé and Barros, N. and Baudis, L. and Bauer, C. and Becerici-Schmidt, N. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Brudanin, V. and Brugnera, R. and Budjáš, D. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and Cossavella, F. and Demidova, E. V. and Domula, A. and Egorov, V. and Falkenstein, R. and Ferella, A. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gotti, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Guthikonda, K. K. and Hampel, W. and Hegai, A. and Heisel, M. and Hemmer, S. and Heusser, G. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Klimenko, A. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Liu, X. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Machado, A. A. and Majorovits, B. and Maneschg, W. and Nemchenok, I. and Nisi, S. and O’Shaughnessy, C. and Palioselitis, D. and Pandola, L. and Pelczar, K. and Pessina, G. and Pullia, A. and Riboldi, S. and Sada, C. and Salathe, M. and Schmitt, C. and Schreiner, J. and Schulz, O. and Schwingenheuer, B. and Schönert, S. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Strecker, H. and Tarka, M. and Ur, C. A. and Vasenko, A. A. and Volynets, O. and Sturm, K. von and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wojcik, M. and Yanovich, E. and Zavarise, P. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = apr,
year = {2014},
pages = {2764},
file = {Full Text PDF:/home/moritz/Zotero/storage/IF7AKUS8/Agostini et al. - 2014 - The background in the \$\$0nu beta beta \$\$ experi.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/TVEKWZ2Y/10.html:text/html}
}
@article{klapdor-kleingrothaus_search_2004,
title = {Search for neutrinoless double beta decay with enriched 76Ge in {Gran} {Sasso} 1990–2003},
volume = {586},
issn = {0370-2693},
url = {http://www.sciencedirect.com/science/article/pii/S0370269304003235},
doi = {10.1016/j.physletb.2004.02.025},
abstract = {The results of the HEIDELBERG–MOSCOW experiment which searches with 11 kg of enriched 76Ge for double beta decay in the Gran Sasso underground laboratory are presented for the full running period August 1990–May 2003. The duty cycle of the experiment was ∼80\%, the collected statistics is 71.7 kgyr. The background achieved in the energy region of the Q value for double beta decay is 0.11 eventskg−1yr−1 keV−1. The two-neutrino accompanied half-life is determined on the basis of more than 100000 events. The confidence level for the neutrinoless signal has been improved to 4.2σ.},
number = {3},
urldate = {2018-07-25},
journal = {Physics Letters B},
author = {Klapdor-Kleingrothaus, H. V and Krivosheina, I. V and Dietz, A and Chkvorets, O},
month = apr,
year = {2004},
pages = {198--212},
file = {ScienceDirect Full Text PDF:/home/moritz/Zotero/storage/8R6ZZIWN/Klapdor-Kleingrothaus et al. - 2004 - Search for neutrinoless double beta decay with enr.pdf:application/pdf;ScienceDirect Snapshot:/home/moritz/Zotero/storage/FHBPIDMH/S0370269304003235.html:text/html}
}
@article{csathy_optical_2016,
title = {Optical fiber read-out for liquid argon scintillation light},
url = {http://arxiv.org/abs/1606.04254},
abstract = {In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R{\textbackslash}\&D effort for the GERDA experiment.},
urldate = {2018-07-25},
journal = {arXiv:1606.04254 [hep-ex, physics:physics]},
author = {Csáthy, J. Janicskó and Bode, T. and Kratz, J. and Schönert, S. and Wiesinger, Ch},
month = jun,
year = {2016},
note = {arXiv: 1606.04254},
keywords = {High Energy Physics - Experiment, Physics - Instrumentation and Detectors},
file = {arXiv\:1606.04254 PDF:/home/moritz/Zotero/storage/GJBDLULF/Csáthy et al. - 2016 - Optical fiber read-out for liquid argon scintillat.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/3FMV82LJ/1606.html:text/html}
}
@article{agostini_production_2015,
title = {Production, characterization and operation of $^{76}$ {Ge} enriched {BE} {Ge} detectors in {GERDA}},
volume = {75},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-014-3253-0},
doi = {10.1140/epjc/s10052-014-3253-0},
abstract = {The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ0νββ0{\textbackslash}nu {\textbackslash}beta {\textbackslash}beta ) of 7676{\textasciicircum}\{76\}Ge. Germanium detectors made of material with an enriched 7676{\textasciicircum}\{76\}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new 7676{\textasciicircum}\{76\}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the 7676{\textasciicircum}\{76\}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.},
language = {en},
number = {2},
urldate = {2018-07-26},
journal = {Eur. Phys. J. C},
author = {Agostini, M. and Allardt, M. and Andreotti, E. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Barros, N. and Baudis, L. and Bauer, C. and Becerici-Schmidt, N. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Budjáš, D. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and D’Andrea, V. and Demidova, E. V. and Domula, A. and Egorov, V. and Falkenstein, R. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gotti, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hegai, A. and Heisel, M. and Hemmer, S. and Heusser, G. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kazalov, V. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Klimenko, A. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Misiaszek, M. and Nemchenok, I. and Nisi, S. and O’Shaughnessy, C. and Palioselitis, D. and Pandola, L. and Pelczar, K. and Pessina, G. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salathe, M. and Schmitt, C. and Schreiner, J. and Schulz, O. and Schütz, A.-K. and Schwingenheuer, B. and Schönert, S. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Strecker, H. and Ur, C. A. and Vanhoefer, L. and Vasenko, A. A. and Sturm, K. von and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wilsenach, H. and Wojcik, M. and Yanovich, E. and Zavarise, P. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = feb,
year = {2015},
pages = {39},
file = {Full Text PDF:/home/moritz/Zotero/storage/MYHZ6SYG/Agostini et al. - 2015 - Production, characterization and operation of \$\$^ .pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/AWNB3S2B/10.html:text/html}
}
@article{agostini_gelatio:_2011,
title = {{GELATIO}: {A} general framework for modular digital analysis of high-purity {Ge} detector signals},
volume = {6},
shorttitle = {{GELATIO}},
doi = {10.1088/1748-0221/6/08/P08013},
abstract = {GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high purity Ge detectors and photo-multipliers from the veto counters. It is designed to support a multi-channel modular and flexible analysis, widely customizable by the user either via human-readable initialization files or via a graphical interface. The framework organizes the data into a multi-level structure, from the raw data up to the condensed analysis parameters, and includes tools and utilities to handle the data stream between the different levels. GELATIO is implemented in C++. It relies upon ROOT and its extension TAM, which provides compatibility with PROOF, enabling the software to run in parallel on clusters of computers or many-core machines. It was tested on different platforms and benchmarked in several GERDA-related applications. A stable version is presently available for the GERDA Collaboration and it is used to provide the reference analysis of the experiment data.},
journal = {Journal of Instrumentation - J INSTRUM},
author = {Agostini, Matteo and Pandola, Luciano and Zavarise, Paolo and Volynets, Oleksandr},
month = jun,
year = {2011},
file = {Full Text PDF:/home/moritz/Zotero/storage/8YJ2SKQR/Agostini et al. - 2011 - GELATIO A general framework for modular digital a.pdf:application/pdf}
}
@article{agostini_off-line_2011,
title = {Off-line data processing and analysis for the {GERDA} experiment},
volume = {368},
doi = {10.1088/1742-6596/368/1/012047},
abstract = {GERDA is an experiment designed to look for the neutrinoless double beta decay of Ge-76. The experiment uses an array of high-purity germanium detectors, enriched in Ge-76, directly immersed in liquid argon. GERDA is presently operating eight enriched coaxial detectors (approximately 15 kg of Ge-76) and about 30 new custom-made enriched BEGe detectors will be deployed in the next phase (additional 20 kg of Ge-76). The paper describes the GERDA off-line analysis of the high-purity germanium detector data. Firstly we present the signal processing flow, focusing on the digital filters and on the algorithms used. Secondly we discuss the rejection of non-physical events and the data quality monitoring. The analysis is performed completely with the GERDA software framework (GELATIO), designed to support a multi-channel processing and to perform a modular analysis of digital signals.},
journal = {Journal of Physics: Conference Series},
author = {Agostini, Matteo and Pandola, Luciano and Zavarise, Paolo},
month = nov,
year = {2011},
file = {Full Text PDF:/home/moritz/Zotero/storage/HPAFHGLP/Agostini et al. - 2011 - Off-line data processing and analysis for the GERD.pdf:application/pdf}
}
@article{bieringer_trace_2009,
series = {5th {International} {Conference} on {Radionuclide} {Metrology} - {Low}-{Level} {Radioactivity} {Measurement} {Techniques} {ICRM}-{LLRMT}'08},
title = {Trace analysis of aerosol bound particulates and noble gases at the {BfS} in {Germany}},
volume = {67},
issn = {0969-8043},
url = {http://www.sciencedirect.com/science/article/pii/S096980430900013X},
doi = {10.1016/j.apradiso.2009.01.008},
abstract = {The Federal Office for Radiation Protection (BfS) performs trace analysis measurements in both the frameworks of the German Integrated Measuring and Information system as well as of the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty. Therefore, different kinds of measurements of aerosol bound radionuclides as well as of radioactive noble gases in the atmosphere are performed. BfS as coordinating laboratory for trace analysis is responsible for the quality control. A quality assurance programme was set up with German institutions and expanded to European laboratories. The existing quality assurance programme of the Comprehensive Nuclear-Test-Ban Treaty Organisation for measurements of aerosol bound radionuclides will be extended for noble gas measurements. Applied methods, achieved measurement results and the different kinds of quality assurance are presented and discussed.},
number = {5},
urldate = {2018-07-27},
journal = {Applied Radiation and Isotopes},
author = {Bieringer, J. and Schlosser, C. and Sartorius, H. and Schmid, S.},
month = may,
year = {2009},
pages = {672--677},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/6U7ZQKCP/S096980430900013X.html:text/html}
}
@article{agostini_pulse_2013,
title = {Pulse shape discrimination for {Gerda} {Phase} {I} data},
volume = {73},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-013-2583-7},
doi = {10.1140/epjc/s10052-013-2583-7},
abstract = {The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0νββ) decay of 76Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched 76Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV γ rays from 208Tl decays as well as two-neutrino double beta (2νββ) decays of 76Ge are used as proxies for 0νββ decay.For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92±0.02 of signal-like events while about 80 \% of the background events at Q ββ =2039 keV are rejected.For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0νββ decay. It retains 90 \% of DEP events and rejects about half of the events around Q ββ . The 2νββ events have an efficiency of 0.85±0.02 and the one for 0νββ decays is estimated to be 0.90+0.05−0.090.90−0.09+0.050.90{\textasciicircum}\{+0.05\}\_\{-0.09\}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 \% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2νββ decays.},
language = {en},
number = {10},
urldate = {2018-07-30},
journal = {Eur. Phys. J. C},
author = {Agostini, M. and Allardt, M. and Andreotti, E. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Heider, M. Barnabé and Barros, N. and Baudis, L. and Bauer, C. and Becerici-Schmidt, N. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Brudanin, V. and Brugnera, R. and Budjáš, D. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and Cossavella, F. and Demidova, E. V. and Domula, A. and Egorov, V. and Falkenstein, R. and Ferella, A. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gotti, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Guthikonda, K. K. and Hampel, W. and Hegai, A. and Heisel, M. and Hemmer, S. and Heusser, G. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Janicskó Csáthy, J. and Jochum, J. and Junker, M. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Klimenko, A. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Liu, X. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Machado, A. A. and Majorovits, B. and Maneschg, W. and Misiaszek, M. and Nemchenok, I. and Nisi, S. and O’Shaughnessy, C. and Pandola, L. and Pelczar, K. and Pessina, G. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salathe, M. and Schmitt, C. and Schreiner, J. and Schulz, O. and Schwingenheuer, B. and Schönert, S. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Strecker, H. and Tarka, M. and Ur, C. A. and Vasenko, A. A. and Volynets, O. and Sturm, K. von and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wojcik, M. and Yanovich, E. and Zavarise, P. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = oct,
year = {2013},
pages = {2583},
file = {Full Text PDF:/home/moritz/Zotero/storage/WGW35FBL/Agostini et al. - 2013 - Pulse shape discrimination for Emphasis Type=Sma.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/NCWU8SXA/10.html:text/html}
}
@article{vergados_theory_2012,
title = {Theory of neutrinoless double beta decay},
volume = {75},
issn = {0034-4885, 1361-6633},
url = {http://arxiv.org/abs/1205.0649},
doi = {10.1088/0034-4885/75/10/106301},
abstract = {Neutrinoless double beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that lepton number is not conserved and the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles have to be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting the useful information from the data. One must accurately evaluate the relevant nuclear matrix elements, a formidable task. To this end, we review the sophisticated nuclear structure approaches recently been developed, which give confidence that the needed nuclear matrix elements can be reliably calculated. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. If a signal is found, it will be a tremendous accomplishment. Then, of course, the real task is going to be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute or even dominate this process. We will, in particular, consider the following processes: (i)The neutrino induced, but neutrino mass independent contribution. (ii)Heavy left and/or right handed neutrino mass contributions. (iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY) contributions. We will show that it is possible to disentangle the various mechanisms and unambiguously extract the important neutrino mass scale, if all the signatures of the reaction are searched in a sufficient number of nuclear isotopes.},
number = {10},
urldate = {2018-07-30},
journal = {Reports on Progress in Physics},
author = {Vergados, J. D. and Ejiri, H. and Simkovic, F.},
month = oct,
year = {2012},
note = {arXiv: 1205.0649},
keywords = {High Energy Physics - Phenomenology, Nuclear Experiment, Nuclear Theory},
pages = {106301},
file = {arXiv\:1205.0649 PDF:/home/moritz/Zotero/storage/EEK947U9/Vergados et al. - 2012 - Theory of neutrinoless double beta decay.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/LS7HJRFR/1205.html:text/html}
}
@article{winger_new_2005,
title = {A new compilation of the atmospheric 85krypton inventories from 1945 to 2000 and its evaluation in a global transport model},
volume = {80},
issn = {0265-931X},
url = {http://www.sciencedirect.com/science/article/pii/S0265931X04002887},
doi = {10.1016/j.jenvrad.2004.09.005},
abstract = {This paper gives the yearly 85Kr emissions of all known reprocessing facilities, which are the main sources of 85Kr in the atmosphere since 1945, for the years 1945 until 2000. According to this inventory 10,600PBq (Peta=1015) of 85Kr have been globally emitted from the year 1945 until the end of 2000. The global atmospheric inventory at the end of the year 2000 amounts to 4800PBq. These emissions have been incorporated into the ECHAM4 atmospheric general circulation model as point sources. Monthly mean model results are compared with measurements made at different locations and times. The influence of each source on the measured concentrations at various locations is studied. The calculated concentrations are found to give reasonably good agreement with the observations, indicating that the emission inventory is realistic. Although, at all northern hemispheric observation sites the model tends to slightly overestimate the concentrations. A possible reason for this overestimation can be found in model features (coarse resolution in time and space). The most prominent discrepancy that is consistently repeated at all northern hemispheric stations occurs in the early 1990s. This could most likely be related to an overestimate of sources. Possibly, the Russian emissions declined earlier than assumed in the current database. Another discrepancy between observations and simulations indicating an incompleteness of the release data is found at some southern hemispheric sites. The variability of their observations could only be explained by regional sources. However, several spikes occur after 1992 when no reprocessing facility is known to be in operation in the southern hemisphere. Production of isotopes for radiopharmaceuticals like technetium-99m from highly enriched uranium is the most likely explanation.},
number = {2},
urldate = {2018-07-30},
journal = {Journal of Environmental Radioactivity},
author = {Winger, K. and Feichter, J. and Kalinowski, M. B. and Sartorius, H. and Schlosser, C.},
month = jan,
year = {2005},
keywords = {Atmospheric global transport, Interhemispheric exchange time, Krypton-85, Nuclear fuel reprocessing, Wide-area environmental monitoring},
pages = {183--215},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/WNGVMJI9/S0265931X04002887.html:text/html}
}
@article{telegadas_atmospheric_1975,
title = {Atmospheric {Concentrations} and {Inventory} of {Krypton}-85 in 1973},
volume = {190},
copyright = {Copyright © 1975, American Association for the Advancement of Science},
issn = {0036-8075, 1095-9203},
url = {http://science.sciencemag.org/content/190/4217/882},
doi = {10.1126/science.190.4217.882},
language = {en},
number = {4217},
urldate = {2018-07-30},
journal = {Science},
author = {Telegadas, K. and Ferber, G. J.},
month = nov,
year = {1975},
pages = {882--883},
file = {Snapshot:/home/moritz/Zotero/storage/IYYSAQCR/882.html:text/html}
}
@article{ahlswede_update_2013,
title = {Update and improvement of the global krypton-85 emission inventory},
volume = {115},
issn = {0265-931X},
url = {http://www.sciencedirect.com/science/article/pii/S0265931X12001816},
doi = {10.1016/j.jenvrad.2012.07.006},
abstract = {Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent.},
urldate = {2018-07-30},
journal = {Journal of Environmental Radioactivity},
author = {Ahlswede, Jochen and Hebel, Simon and Ross, J. Ole and Schoetter, Robert and Kalinowski, Martin B.},
month = jan,
year = {2013},
keywords = {Krypton-85, Nuclear fuel reprocessing, Characteristics, Emission, Emission inventory, Isotope production},
pages = {34--42},
file = {ScienceDirect Snapshot:/home/moritz/Zotero/storage/UL7EXA2V/S0265931X12001816.html:text/html}
}
@article{weiss_mesoscale_1986,
title = {Mesoscale transport of 85Kr originating from {European} sources},
volume = {17},
issn = {0168-583X},
url = {http://www.sciencedirect.com/science/article/pii/0168583X86902168},
doi = {10.1016/0168-583X(86)90216-8},
abstract = {Four stations located in western and central Europe, Freiburg, Schauinsland, Madrid, and Cracow have been continuously recording the 85Kr activity of the near ground air since 1981. 85Kr spikes are frequently observed by all the stations. The spikes are superimposed on the 85Kr baseline of typically 22 pCim3 (year 1983) which is steadily increasing by a few percent per year. Most of the spikes are the result of discharges of two European reprocessing plants for nuclear fuel, Sellafield and La Hague. Two examples are discussed that demonstrate how a 85Kr spike can be traced back to its source.},
number = {5},
urldate = {2018-07-30},
journal = {Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms},
author = {Weiss, W. and Stockburger, H. and Sartorius, H. and Rozanski, K. and Heras, C. and Östlund, H. G.},
month = nov,
year = {1986},
pages = {571--574},
file = {ScienceDirect Full Text PDF:/home/moritz/Zotero/storage/TEDLWDIU/Weiss et al. - 1986 - Mesoscale transport of 85Kr originating from Europ.pdf:application/pdf;ScienceDirect Snapshot:/home/moritz/Zotero/storage/MLN45G5S/0168583X86902168.html:text/html}
}
@article{weiss_global_1992,
title = {Global distribution of atmospheric $^{\textrm{85}}${Kr}. {A} database for the verification of transport and mixing models},
url = {http://inis.iaea.org/Search/search.aspx?orig_q=RN:23057794},
language = {en},
urldate = {2018-07-30},
journal = {Isotopes of noble gases as tracers in environmental studies},
author = {Weiss, W. and Sartorius, H. and Stockburger, H.},
year = {1992},
file = {Snapshot:/home/moritz/Zotero/storage/FRBQK6DS/search.html:text/html}
}
@article{j._jacob_atmospheric_1987,
title = {Atmospheric distribution of 85Kr simulated with a general circulation model},
volume = {92},
doi = {10.1029/JD092iD06p06614},
abstract = {A three-dimensional chemical tracer model for the troposphere is used to simulate the global distribution of 85Kr, a long-lived radioisotope released at northern mid-latitudes by nuclear industry. Simulated distributions for the period 1980-1983 are in excellent agreement with data from six latitudinal profiles measured over the Atlantic. High concentrations of 85Kr are predicted over the Arctic in winter, advected from European sources, and somewhat smaller enhancements arising from the same sources are predicted over the tropical Atlantic in summer. Latitudinal gradients are steepest in the northern tropics, with distinctly different seasonal variations over the Pacific, as compared to the Atlantic. The global inventory of 85Kr is reconstructed for the period 1980-1983 by combining the concentrations measured over the Atlantic with the global distributions predicted by the model. The magnitude of the Soviet source is derived. The interhemispheric exchange time is calculated as 1.1 years, with little seasonal dependence.},
journal = {Journal of Geophysical Research},
author = {J. Jacob, Daniel and Prather, Michael and Wofsy, Steven and B. McElroy, Michael},
month = jun,
year = {1987},
pages = {6614--6626},
file = {Full Text PDF:/home/moritz/Zotero/storage/6HP824XV/J. Jacob et al. - 1987 - Atmospheric distribution of 85Kr simulated with a .pdf:application/pdf}
}
@article{barabash_double_2011,
title = {Double {Beta} {Decay}: {Historical} {Review} of 75 {Years} of {Research}},
volume = {74},
issn = {1063-7788, 1562-692X},
shorttitle = {Double {Beta} {Decay}},
url = {http://arxiv.org/abs/1104.2714},
doi = {10.1134/S1063778811030070},
abstract = {Main achievements during 75 years of research on double beta decay have been reviewed. The existing experimental data have been presented and the capabilities of the next-generation detectors have been demonstrated.},
number = {4},
urldate = {2018-08-04},
journal = {Physics of Atomic Nuclei},
author = {Barabash, A. S.},
month = apr,
year = {2011},
note = {arXiv: 1104.2714},
keywords = {Nuclear Experiment},
pages = {603--613},
file = {arXiv\:1104.2714 PDF:/home/moritz/Zotero/storage/Z6NMLHJ7/Barabash - 2011 - Double Beta Decay Historical Review of 75 Years o.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/BDJ9LSQZ/1104.html:text/html}
}
@article{barabash_brief_2017,
title = {Brief review of double beta decay experiments},
url = {http://arxiv.org/abs/1702.06340},
abstract = {Best present experimental achievements in double beta decay are presented. Possible progress in this field in the near and far future is discussed.},
urldate = {2018-08-04},
journal = {arXiv:1702.06340 [nucl-ex]},
author = {Barabash, A. S.},
month = feb,
year = {2017},
note = {arXiv: 1702.06340},
keywords = {Nuclear Experiment},
file = {arXiv\:1702.06340 PDF:/home/moritz/Zotero/storage/EJ68NNVM/Barabash - 2017 - Brief review of double beta decay experiments.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/VRA5AXPP/1702.html:text/html}
}
@article{shirai_double_2018,
title = {Double {Beta} {Decay}},
volume = {46},
url = {https://www.worldscientific.com/doi/abs/10.1142/S2010194518600029},
doi = {10.1142/S2010194518600029},
abstract = {Double beta decay is a key process to reveal a fundamental property of neutrinos. If neutrinos are Majorana particles, that is they are equivalent to their antiparticles, neutrinoless double beta (0νββ0νββ{\textless}math display="inline" overflow="scroll" altimg="eq-00001.gif"{\textgreater}{\textless}mn{\textgreater}0{\textless}/mn{\textgreater}{\textless}mi{\textgreater}ν{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}/math{\textgreater}) decay, (A,Z)→(A,Z+2)+2e−(A,Z)→(A,Z+2)+2e−{\textless}math display="inline" overflow="scroll" altimg="eq-00002.gif"{\textgreater}{\textless}mo class="MathClass-open" stretchy="false"{\textgreater}({\textless}/mo{\textgreater}{\textless}mi{\textgreater}A{\textless}/mi{\textgreater}{\textless}mo class="MathClass-punc"{\textgreater},{\textless}/mo{\textgreater}{\textless}mi{\textgreater}Z{\textless}/mi{\textgreater}{\textless}mo class="MathClass-close" stretchy="false"{\textgreater}){\textless}/mo{\textgreater}{\textless}mo class="MathClass-rel"{\textgreater}→{\textless}/mo{\textgreater}{\textless}mo class="MathClass-open" stretchy="false"{\textgreater}({\textless}/mo{\textgreater}{\textless}mi{\textgreater}A{\textless}/mi{\textgreater}{\textless}mo class="MathClass-punc"{\textgreater},{\textless}/mo{\textgreater}{\textless}mi{\textgreater}Z{\textless}/mi{\textgreater}{\textless}mo stretchy="false" class="MathClass-bin"{\textgreater}+{\textless}/mo{\textgreater}{\textless}mn{\textgreater}2{\textless}/mn{\textgreater}{\textless}mo class="MathClass-close" stretchy="false"{\textgreater}){\textless}/mo{\textgreater}{\textless}mo stretchy="false" class="MathClass-bin"{\textgreater}+{\textless}/mo{\textgreater}{\textless}mn{\textgreater}2{\textless}/mn{\textgreater}{\textless}msup{\textgreater}{\textless}mrow{\textgreater}{\textless}mi{\textgreater}e{\textless}/mi{\textgreater}{\textless}/mrow{\textgreater}{\textless}mrow{\textgreater}{\textless}mo stretchy="false" class="MathClass-bin"{\textgreater}−{\textless}/mo{\textgreater}{\textless}/mrow{\textgreater}{\textless}/msup{\textgreater}{\textless}/math{\textgreater}, would occur. The process is beyond the standard model and would lead to a scenario which can explain the extremely small masses of neutrinos and provide a solution to the current matter dominance of the world. In this talk experimental efforts searching for 0νββ0νββ{\textless}math display="inline" overflow="scroll" altimg="eq-00003.gif"{\textgreater}{\textless}mn{\textgreater}0{\textless}/mn{\textgreater}{\textless}mi{\textgreater}ν{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}/math{\textgreater} decays are presented. Then, major 0νββ0νββ{\textless}math display="inline" overflow="scroll" altimg="eq-00004.gif"{\textgreater}{\textless}mn{\textgreater}0{\textless}/mn{\textgreater}{\textless}mi{\textgreater}ν{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}mi{\textgreater}β{\textless}/mi{\textgreater}{\textless}/math{\textgreater} experiments together with searches using 136136{\textless}math display="inline" overflow="scroll" altimg="eq-00005.gif"{\textgreater}{\textless}msup{\textgreater}{\textless}mrow{\textgreater}{\textless}/mrow{\textgreater}{\textless}mrow{\textgreater}{\textless}mn{\textgreater}1{\textless}/mn{\textgreater}{\textless}mn{\textgreater}3{\textless}/mn{\textgreater}{\textless}mn{\textgreater}6{\textless}/mn{\textgreater}{\textless}/mrow{\textgreater}{\textless}/msup{\textgreater}{\textless}/math{\textgreater}Xe nuclei are described, followed by the current status of the KamLAND-Zen experiment.},
urldate = {2018-08-04},
journal = {Int. J. Mod. Phys. Conf. Ser.},
author = {Shirai, J.},
month = jan,
year = {2018},
pages = {1860002},
file = {Full Text PDF:/home/moritz/Zotero/storage/YBKYHKAV/Shirai - 2018 - Double Beta Decay.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/LN67E8MQ/S2010194518600029.html:text/html}
}
@article{barabash_brief_2017-1,
title = {Brief review of double beta decay experiments},
url = {http://arxiv.org/abs/1702.06340},
abstract = {Best present experimental achievements in double beta decay are presented. Possible progress in this field in the near and far future is discussed.},
urldate = {2018-08-04},
journal = {arXiv:1702.06340 [nucl-ex]},
author = {Barabash, A. S.},
month = feb,
year = {2017},
note = {arXiv: 1702.06340},
keywords = {Nuclear Experiment},
file = {arXiv\:1702.06340 PDF:/home/moritz/Zotero/storage/KPMM8TC5/Barabash - 2017 - Brief review of double beta decay experiments.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/SXILX9QZ/1702.html:text/html}
}
@article{delloro_neutrinoless_2016,
title = {Neutrinoless double beta decay: 2015 review},
volume = {2016},
issn = {1687-7357, 1687-7365},
shorttitle = {Neutrinoless double beta decay},
url = {http://arxiv.org/abs/1601.07512},
doi = {10.1155/2016/2162659},
abstract = {The discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta decay (\$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$). In this paper, we review the main features of this process, underlining its key role both from the experimental and theoretical point of view. In particular, we contextualize the \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ in the panorama of lepton-number violating processes, also assessing some possible particle physics mechanisms mediating the process. Since the \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ existence is correlated with neutrino masses, we also review the state-of-art of the theoretical understanding of neutrino masses. In the final part, the status of current \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ experiments is presented and the prospects for the future hunt for \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ are discussed. Also, experimental data coming from cosmological surveys are considered and their impact on \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ expectations is examined.},
urldate = {2018-08-04},
journal = {Advances in High Energy Physics},
author = {Dell'Oro, S. and Marcocci, S. and Viel, M. and Vissani, F.},
year = {2016},
note = {arXiv: 1601.07512},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology},
pages = {1--37},
file = {arXiv\:1601.07512 PDF:/home/moritz/Zotero/storage/YRCBNUUC/Dell'Oro et al. - 2016 - Neutrinoless double beta decay 2015 review.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/6VXIG43F/1601.html:text/html}
}
@article{bilenky_alternative_2017,
title = {An alternative method of determining the neutrino mass ordering in reactor neutrino experiments},
volume = {772},
issn = {0370-2693},
url = {http://www.sciencedirect.com/science/article/pii/S0370269317305208},
doi = {10.1016/j.physletb.2017.06.044},
abstract = {We discuss a novel alternative method of determining the neutrino mass ordering in medium baseline experiments with reactor antineutrinos. Results on the potential sensitivity of the new method are also presented.},
urldate = {2018-08-04},
journal = {Physics Letters B},
author = {Bilenky, S. M. and Capozzi, F. and Petcov, S. T.},
month = sep,
year = {2017},
pages = {179--183},
file = {ScienceDirect Full Text PDF:/home/moritz/Zotero/storage/6RSB7IF6/Bilenky et al. - 2017 - An alternative method of determining the neutrino .pdf:application/pdf;ScienceDirect Snapshot:/home/moritz/Zotero/storage/NERU82CK/S0370269317305208.html:text/html}
}
@article{otten_neutrino_2008,
title = {Neutrino mass limit from tritium beta decay},
volume = {71},
issn = {0034-4885, 1361-6633},
url = {http://arxiv.org/abs/0909.2104},
doi = {10.1088/0034-4885/71/8/086201},
abstract = {The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass \$m({\textbackslash}nu\_e)\$. By use of dedicated electrostatic filters with high acceptance and resolution, the uncertainty on the observable \$m{\textasciicircum}2({\textbackslash}nu\_e)\$ has been pushed down to about 3 eV\${\textasciicircum}2\$. The new upper limit of the mass is \$m({\textbackslash}nu\_e) {\textless} 2\$ eV at 95\% C.L. In view of erroneous and unphysical mass results obtained by some earlier experiments in beta decay, particular attention is paid to systematic effects. The mass limit is discussed in the context of current neutrino research in particle- and astrophysics. A preview is given of the next generation of beta spectroscopy experiments currently under development and construction; they aim at lowering the \$m{\textasciicircum}2({\textbackslash}nu\_e)\$-uncertainty by another factor of 100, reaching a sensitivity limit \$m({\textbackslash}nu\_e) {\textless} 0.2\$ eV.},
number = {8},
urldate = {2018-08-04},
journal = {Reports on Progress in Physics},
author = {Otten, E. W. and Weinheimer, C.},
month = aug,
year = {2008},
note = {arXiv: 0909.2104},
keywords = {High Energy Physics - Experiment, Nuclear Experiment},
pages = {086201},
file = {arXiv\:0909.2104 PDF:/home/moritz/Zotero/storage/YG5AZIXN/Otten und Weinheimer - 2008 - Neutrino mass limit from tritium beta decay.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/DWS5S3M5/0909.html:text/html}
}
@article{abazajian_cosmological_2011,
title = {Cosmological and {Astrophysical} {Neutrino} {Mass} {Measurements}},
volume = {35},
issn = {09276505},
url = {http://arxiv.org/abs/1103.5083},
doi = {10.1016/j.astropartphys.2011.07.002},
abstract = {Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.},
number = {4},
urldate = {2018-08-04},
journal = {Astroparticle Physics},
author = {Abazajian, K. N. and Calabrese, E. and Cooray, A. and De Bernardis, F. and Dodelson, S. and Friedland, A. and Fuller, G. M. and Hannestad, S. and Keating, B. G. and Linder, E. V. and Lunardini, C. and Melchiorri, A. and Miquel, R. and Pierpaoli, E. and Pritchard, J. and Serra, P. and Takada, M. and Wong, Y. Y. Y.},
month = nov,
year = {2011},
note = {arXiv: 1103.5083},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology},
pages = {177--184},
file = {arXiv\:1103.5083 PDF:/home/moritz/Zotero/storage/XW9EQAPB/Abazajian et al. - 2011 - Cosmological and Astrophysical Neutrino Mass Measu.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/5QKSS63W/1103.html:text/html}
}
@article{agostini_background_2017,
title = {Background free search for neutrinoless double beta decay with {GERDA} {Phase} {II}},
volume = {544},
issn = {0028-0836, 1476-4687},
url = {http://arxiv.org/abs/1703.00570},
doi = {10.1038/nature21717},
abstract = {The Standard Model of particle physics cannot explain the dominance of matter over anti-matter in our Universe. In many model extensions this is a very natural consequence of neutrinos being their own anti-particles (Majorana particles) which implies that a lepton number violating radioactive decay named neutrinoless double beta (\$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$) decay should exist. The detection of this extremely rare hypothetical process requires utmost suppression of any kind of backgrounds. The GERDA collaboration searches for \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ decay of \${\textasciicircum}\{76\}\$Ge (\${\textasciicircum}\{76\}{\textbackslash}rm\{Ge\} {\textbackslash}rightarrow{\textbackslash},{\textasciicircum}\{76\}{\textbackslash}rm\{Se\} + 2e{\textasciicircum}-\$) by operating bare detectors made from germanium with enriched \${\textasciicircum}\{76\}\$Ge fraction in liquid argon. Here, we report on first data of GERDA Phase II. A background level of \${\textbackslash}approx10{\textasciicircum}\{-3\}\$ cts/(keV\${\textbackslash}cdot\$kg\${\textbackslash}cdot\$yr) has been achieved which is the world-best if weighted by the narrow energy-signal region of germanium detectors. Combining Phase I and II data we find no signal and deduce a new lower limit for the half-life of \$5.3{\textbackslash}cdot10{\textasciicircum}\{25\}\$ yr at 90 \% C.L. Our sensitivity of \$4.0{\textbackslash}cdot10{\textasciicircum}\{25\}\$ yr is competitive with the one of experiments with significantly larger isotope mass. GERDA is the first \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ experiment that will be background-free up to its design exposure. This progress relies on a novel active veto system, the superior germanium detector energy resolution and the improved background recognition of our new detectors. The unique discovery potential of an essentially background-free search for \$0{\textbackslash}nu{\textbackslash}beta{\textbackslash}beta\$ decay motivates a larger germanium experiment with higher sensitivity.},
number = {7648},
urldate = {2018-08-04},
journal = {Nature},
author = {Agostini, M. and Allardt, M. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Baudis, L. and Bauer, C. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and D'Andrea, V. and Demidova, E. V. and DiMarco, N. and diVacri, A. and Domula, A. and Doroshkevich, E. and Egorov, V. and Falkenstein, R. and Fedorova, O. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gooch, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hakenmüller, J. and Hegai, A. and Heisel, M. and Hemmer, S. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kazalov, V. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Kish, A. and Klimenko, A. and Kneißl, R. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Medinaceli, E. and Miloradovic, M. and Mingazheva, R. and Misiaszek, M. and Moseev, P. and Nemchenok, I. and Palioselitis, D. and Panas, K. and Pandola, L. and Pelczar, K. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salamida, F. and Salathe, M. and Schmitt, C. and Schneider, B. and Schönert, S. and Schreiner, J. and Schulz, O. and Schütz, A.-K. and Schwingenheuer, B. and Selivanenko, O. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Vanhoefer, L. and Vasenko, A. A. and Veresnikova, A. and von Sturm, K. and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wiesinger, C. and Wojcik, M. and Yanovich, E. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = apr,
year = {2017},
note = {arXiv: 1703.00570},
keywords = {High Energy Physics - Experiment, Physics - Instrumentation and Detectors, Nuclear Experiment},
pages = {47--52},
file = {arXiv\:1703.00570 PDF:/home/moritz/Zotero/storage/HGJSQQ4L/Agostini et al. - 2017 - Background free search for neutrinoless double bet.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/WQYRRXIP/1703.html:text/html}
}
@phdthesis{schmidt_results_2014,
title = {Results on {Neutrinoless} {Double} {Beta} {Decay} {Search} in {GERDA}: {Background} {Modeling} and {Limit} {Setting}},
url = {https://www.mpi-hd.mpg.de/gerda/public/2014/phd2014_neslihanBecericiSchmidt.pdf},
urldate = {2018-07-20},
school = {Technische Universität München},
author = {Schmidt, Neslihan Becerici},
month = jun,
year = {2014},
file = {phd2014_neslihanBecericiSchmidt.pdf:/home/moritz/Zotero/storage/Y3IPGZGP/phd2014_neslihanBecericiSchmidt.pdf:application/pdf}
}
@article{aalseth_igex_2002,
title = {The {Igex} 76ge {Neutrinoless} {Double}-{Beta} {Decay} {Experiment}: {Prospects} for {Next} {Generation} {Experiments}},
volume = {65},
issn = {0556-2821, 1089-4918},
shorttitle = {The {Igex} 76ge {Neutrinoless} {Double}-{Beta} {Decay} {Experiment}},
url = {http://arxiv.org/abs/hep-ex/0202026},
doi = {10.1103/PhysRevD.65.092007},
abstract = {The International Germanium Experiment (IGEX) has analyzed 117 mole yr of 76Ge data from its isotopically enriched (86\% 76Ge) germanium detectors. Applying pulse-shape discrimination (PSD) to the more recent data, the lower bound on the half-life for neutrinoless double-beta decay of 76Ge is: \$T\_\{1/2\}(0{\textbackslash}nu){\textgreater} 1.57 {\textbackslash}times 10{\textasciicircum}\{25\}\$ yr (90\% C.L.). This corresponds to an upper bound in the Majorana neutrino mass parameter,\${\textless}m\_\{{\textbackslash}nu\}{\textgreater}\$, between 0.33 eV and 1.35 eV, depending on the choice of theoretical nuclear matrix elements used in the analysis.},
number = {9},
urldate = {2018-08-04},
journal = {Physical Review D},
author = {Aalseth, C. E. and Avignone III, F. T. and Brodzinski, R. L. and Cebrian, S. and Garcia, E. and Gonzalez, D. and Hensley, W. K. and Irastorza, I. G. and Kirpichnikov, I. V. and Klimenko, A. A. and Miley, H. S. and Morales, A. and Morales, J. and de Solorzano, A. Ortiz and Osetrov, S. B. and Pogosov, V. S. and Puimedon, J. and Reeves, J. H. and Sarsa, M. L. and Smolnikov, A. A. and Starostin, A. S. and Tamanyan, A. G. and Vasenko, A. A. and Vasiliev, S. I. and Villar, J. A.},
month = may,
year = {2002},
note = {arXiv: hep-ex/0202026},
keywords = {High Energy Physics - Experiment, Nuclear Experiment},
file = {arXiv\:hep-ex/0202026 PDF:/home/moritz/Zotero/storage/SLTLMYGF/Aalseth et al. - 2002 - The Igex 76ge Neutrinoless Double-Beta Decay Exper.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/BWQ6HENF/0202026.html:text/html}
}
@article{schechter_neutrinoless_1982,
title = {Neutrinoless double- β decay in {SU}(2)×{U}(1) theories},
volume = {25},
issn = {0556-2821},
url = {https://link.aps.org/doi/10.1103/PhysRevD.25.2951},
doi = {10.1103/PhysRevD.25.2951},
language = {en},
number = {11},
urldate = {2018-08-04},
journal = {Physical Review D},
author = {Schechter, J. and Valle, J. W. F.},
month = jun,
year = {1982},
pages = {2951--2954}
}
@techreport{nichols_indc_2017,
title = {{INDC} {International} {Nuclear} {Data} {Committee}},
url = {http://www.osti.gov/servlets/purl/1413963/},
language = {en},
number = {BNL--114827-2017-IR, 1413963},
urldate = {2018-08-04},
author = {Nichols, A. and McCutchan, E. and Dimitriou, P.},
month = dec,
year = {2017},
doi = {10.2172/1413963},
file = {Nichols et al. - 2017 - INDC International Nuclear Data Committee.pdf:/home/moritz/Zotero/storage/NZYDI5R2/Nichols et al. - 2017 - INDC International Nuclear Data Committee.pdf:application/pdf}
}
@phdthesis{matteo_agostini_signal_2013,
title = {Signal and background studies for the search of neutrinoless double beta decay in {GERDA}},
school = {Technische Universität München},
author = {{Matteo Agostini}},
month = mar,
year = {2013},
file = {2013_Matteo_Agostini_Signal_and_background_studies_for_the_search_of_neutrinoless_double_beta_decay_in_GERDA.pdf:/home/moritz/Downloads/2013_Matteo_Agostini_Signal_and_background_studies_for_the_search_of_neutrinoless_double_beta_decay_in_GERDA.pdf:application/pdf}
}
@article{boswell_mage_2011,
title = {{MaGe} - a {Geant}4-based {Monte} {Carlo} {Application} {Framework} for {Low}-background {Germanium} {Experiments}},
volume = {58},
issn = {0018-9499, 1558-1578},
url = {http://arxiv.org/abs/1011.3827},
doi = {10.1109/TNS.2011.2144619},
abstract = {We describe a physics simulation software framework, MAGE, that is based on the GEANT4 simulation toolkit. MAGE is used to simulate the response of ultra-low radioactive background radiation detectors to ionizing radiation, specifically the MAJORANA and GERDA neutrinoless double-beta decay experiments. MAJORANA and GERDA use high-purity germanium detectors to search for the neutrinoless double-beta decay of 76Ge, and MAGE is jointly developed between these two collaborations. The MAGE framework contains the geometry models of common objects, prototypes, test stands, and the actual experiments. It also implements customized event generators, GEANT4 physics lists, and output formats. All of these features are available as class libraries that are typically compiled into a single executable. The user selects the particular experimental setup implementation at run-time via macros. The combination of all these common classes into one framework reduces duplication of efforts, eases comparison between simulated data and experiment, and simplifies the addition of new detectors to be simulated. This paper focuses on the software framework, custom event generators, and physics lists.},
number = {3},
urldate = {2018-08-04},
journal = {IEEE Transactions on Nuclear Science},
author = {Boswell, Melissa and Chan, Yuen-Dat and Detwiler, Jason A. and Finnerty, Padraic and Henning, Reyco and Gehman, Victor M. and Johnson, Rob A. and Jordan, David V. and Kazkaz, Kareem and Knapp, Markus and Kröninger, Kevin and Lenz, Daniel and Leviner, Lance and Liu, Jing and Liu, Xiang and MacMullin, Sean and Marino, Michael G. and Mokhtarani, Akbar and Pandola, Luciano and Schubert, Alexis G. and Schubert, Jens and Tomei, Claudia and Volynets, Oleksandr},
month = jun,
year = {2011},
note = {arXiv: 1011.3827},
keywords = {Nuclear Experiment},
pages = {1212--1220},
file = {arXiv\:1011.3827 PDF:/home/moritz/Zotero/storage/RW9EGLZV/Boswell et al. - 2011 - textsc MaGe - a sc Geant4 -based Monte Carlo A.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/5NN9QERG/1011.html:text/html}
}
@article{fukuda_evidence_1998,
title = {Evidence for {Oscillation} of {Atmospheric} {Neutrinos}},
volume = {81},
issn = {0031-9007, 1079-7114},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.81.1562},
doi = {10.1103/PhysRevLett.81.1562},
language = {en},
number = {8},
urldate = {2018-08-04},
journal = {Physical Review Letters},
author = {Fukuda, Y. and Hayakawa, T. and Ichihara, E. and Inoue, K. and Ishihara, K. and Ishino, H. and Itow, Y. and Kajita, T. and Kameda, J. and Kasuga, S. and Kobayashi, K. and Kobayashi, Y. and Koshio, Y. and Miura, M. and Nakahata, M. and Nakayama, S. and Okada, A. and Okumura, K. and Sakurai, N. and Shiozawa, M. and Suzuki, Y. and Takeuchi, Y. and Totsuka, Y. and Yamada, S. and Earl, M. and Habig, A. and Kearns, E. and Messier, M. D. and Scholberg, K. and Stone, J. L. and Sulak, L. R. and Walter, C. W. and Goldhaber, M. and Barszczxak, T. and Casper, D. and Gajewski, W. and Halverson, P. G. and Hsu, J. and Kropp, W. R. and Price, L. R. and Reines, F. and Smy, M. and Sobel, H. W. and Vagins, M. R. and Ganezer, K. S. and Keig, W. E. and Ellsworth, R. W. and Tasaka, S. and Flanagan, J. W. and Kibayashi, A. and Learned, J. G. and Matsuno, S. and Stenger, V. J. and Takemori, D. and Ishii, T. and Kanzaki, J. and Kobayashi, T. and Mine, S. and Nakamura, K. and Nishikawa, K. and Oyama, Y. and Sakai, A. and Sakuda, M. and Sasaki, O. and Echigo, S. and Kohama, M. and Suzuki, A. T. and Haines, T. J. and Blaufuss, E. and Kim, B. K. and Sanford, R. and Svoboda, R. and Chen, M. L. and Conner, Z. and Goodman, J. A. and Sullivan, G. W. and Hill, J. and Jung, C. K. and Martens, K. and Mauger, C. and McGrew, C. and Sharkey, E. and Viren, B. and Yanagisawa, C. and Doki, W. and Miyano, K. and Okazawa, H. and Saji, C. and Takahata, M. and Nagashima, Y. and Takita, M. and Yamaguchi, T. and Yoshida, M. and Kim, S. B. and Etoh, M. and Fujita, K. and Hasegawa, A. and Hasegawa, T. and Hatakeyama, S. and Iwamoto, T. and Koga, M. and Maruyama, T. and Ogawa, H. and Shirai, J. and Suzuki, A. and Tsushima, F. and Koshiba, M. and Nemoto, M. and Nishijima, K. and Futagami, T. and Hayato, Y. and Kanaya, Y. and Kaneyuki, K. and Watanabe, Y. and Kielczewska, D. and Doyle, R. A. and George, J. S. and Stachyra, A. L. and Wai, L. L. and Wilkes, R. J. and Young, K. K.},
month = aug,
year = {1998},
pages = {1562--1567}
}
@article{zsigmond_new_2018,
title = {New {Results} {From} {Gerda} {Phase} {II}},
url = {https://zenodo.org/record/1287604},
doi = {10.5281/zenodo.1287604},
abstract = {The observation of neutrinoless double beta (0νββ) decay would establish both the violation of lepton number conservation and the Majorana nature of the neutrino, as well as constrain the neutrinomass hierarchy and scale. GERDA reached an important milestone in the search for 0νββ decay with ⁷⁶Ge by achieving a half-life sensitivity of 10²⁶ years. This is made possible by the background-free conditions in GERDA and by a factor of two increase in exposure since the last data release in 2017. New results will be presented together with the details of background reduction techniques.},
urldate = {2018-08-04},
author = {Zsigmond, Anna Julia},
month = jun,
year = {2018}
}
@inproceedings{riboldi_cryogenic_2015,
title = {Cryogenic readout techniques for {Germanium} detectors},
isbn = {978-1-4799-9918-7},
url = {http://ieeexplore.ieee.org/document/7465549/},
doi = {10.1109/ANIMMA.2015.7465549},
urldate = {2018-08-04},
publisher = {IEEE},
author = {Riboldi, S. and Cattadori, C. and Ferri, E. and Salamida, F. and D'Andrea, V. and Di Vacri, A. and Macolino, C. and Benato, G.},
month = apr,
year = {2015},
pages = {1--6}
}
@article{bilenky_neutrinoless_2012,
title = {Neutrinoless {Double}-{Beta} {Decay}: a brief {Review}},
volume = {27},
issn = {0217-7323, 1793-6632},
shorttitle = {{NEUTRINOLESS} {DOUBLE}-{BETA} {DECAY}},
url = {http://www.worldscientific.com/doi/abs/10.1142/S0217732312300157},
doi = {10.1142/S0217732312300157},
language = {en},
number = {13},
urldate = {2018-08-04},
journal = {Modern Physics Letters A},
author = {Bilenky, S. M. and Giunti, C.},
month = apr,
year = {2012},
pages = {1230015}
}
@article{civicos_de_francisco_determinacion_2017,
title = {Determinación de los radioisótopos de {Polonio}-210 y {Radio}-226 en aguas de consumo y continentales},
copyright = {info:eu-repo/semantics/openAccess},
url = {http://uvadoc.uva.es:80/handle/10324/25798},
abstract = {La radiactividad fue descubierta por Henri Becquerel en 1896 mientras estudiaba las propiedades de fluorescencia y fosforescencia de la pechblenda. No fue hasta 1898, que Marie y Pierre Curie comenzaron a estudiar el fenómeno y concluyeron que era característico de los núcleos de algunos átomos. Ese mismo año, el matrimonio Curie, descubrió dos nuevos elementos en la pechblenda, el Polonio y el Radio (objeto de este estudio), mucho más activos que el Uranio descubierto previamente.
En la naturaleza, los elementos radiactivos provienen de minerales y rocas subterráneas, que están en contacto con los acuíferos. El agua, erosiona la roca y puede disolver ciertos elementos, entre los cuales se pueden encontrar los de carácter radiactivo, cuyo contenido debe ser controlado y determinado con vistas a la potabilidad del agua.
En este trabajo, se han analizado los elementos Polonio (Po-210), autodepositado en discos de Níquel, y Radio (Ra-226), autoadsorbido en discos de MnO2, en diferentes muestras de aguas de captación profunda. Los elementos se determinaron por espectrometría alfa, característica de los mismos Las muestras analizadas se recogieron en 4 provincias de Castilla y León: Salamanca, Ávila, Valladolid y Segovia, a diferentes profundidades, y nos fueron suministradas por la Junta de Castilla y León.
Previo al análisis, ha sido necesaria la puesta a punto y el calibrado del equipo de medida, a través de un procedimiento normalizado de equipo (PNE). A continuación se desarrollaron y validaron los correspondientes Procedimientos Normalizados de Trabajo (PNT). Primero, uno en el que se desarrolló el tratamiento de disoluciones radiactivas y, posteriormente, aquellos que fueron aplicados a muestras de agua de captación profunda, obteniendo unos valores (en unidades de actividad específica mBq/Kg), que han oscilado entre 7,51 – 421,16 mBq/Kg para el Po-210, mientras que para el Ra-226 lo han hecho entre 4,75 – 584,77 mBq/Kg, y que fueron reportados a las autoridades sanitarias de la Junta de Castilla y León.},
language = {spa},
urldate = {2018-08-05},
author = {Cívicos de Francisco, Iván},
year = {2017},
file = {Full Text PDF:/home/moritz/Zotero/storage/QQANPSXP/Cívicos de Francisco - 2017 - Determinación de los radioisótopos de Polonio-210 .pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/3PS9P4XP/25798.html:text/html}
}
@article{bilenky_massive_1987,
title = {Massive neutrinos and neutrino oscillations},
volume = {59},
url = {https://link.aps.org/doi/10.1103/RevModPhys.59.671},
doi = {10.1103/RevModPhys.59.671},
abstract = {The theory of neutrino mixing and neutrino oscillations, as well as the properties of massive neutrinos (Dirac and Majorana), are reviewed. More specifically, the following topics are discussed in detail: (i) the possible types of neutrino mass terms; (ii) oscillations of neutrinos (iii) the implications of CP invariance for the mixing and oscillations of neutrinos in vacuum; (iv) possible varieties of massive neutrinos (Dirac, Majorana, pseudo-Dirac); (v) the physical differences between massive Dirac and massive Majorana neutrinos and the possibilities of distinguishing experimentally between them; (vi) the electromagnetic properties of massive neutrinos. Some of the proposed mechanisms of neutrino mass generation in gauge theories of the electroweak interaction and in grand unified theories are also discussed. The lepton number nonconserving processes μ→eγ and μ→3e in theories with massive neutrinos are considered. The basic elements of the theory of neutrinoless double-β decay are discussed as well. Finally, the existing data on neutrino masses, oscillations of neutrinos, and neutrinoless double-β decay are briefly reviewed. The main emphasis in the review is on the general model-independent results of the theory. Detailed derivations of these are presented.},
number = {3},
urldate = {2018-08-06},
journal = {Rev. Mod. Phys.},
author = {Bilenky, S. M. and Petcov, S. T.},
month = jul,
year = {1987},
pages = {671--754},
file = {APS Snapshot:/home/moritz/Zotero/storage/25QB6HHY/RevModPhys.59.html:text/html}
}
@article{sno_collaboration_direct_2002,
title = {Direct {Evidence} for {Neutrino} {Flavor} {Transformation} from {Neutral}-{Current} {Interactions} in the {Sudbury} {Neutrino} {Observatory}},
volume = {89},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.89.011301},
doi = {10.1103/PhysRevLett.89.011301},
abstract = {Observations of neutral-current ν interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the νe component of the 8B solar flux is φe=1.76+0.05−0.05(stat)+0.09−0.09(syst)×106cm−2s−1 for a kinetic energy threshold of 5 MeV. The non- νe component is φμτ=3.41+0.45−0.45(stat)+0.48−0.45(syst)×106cm−2s−1, 5.3σ greater than zero, providing strong evidence for solar νe flavor transformation. The total flux measured with the NC reaction is φNC=5.09+0.44−0.43(stat)+0.46−0.43(syst)×106cm−2s−1, consistent with solar models., This article appears in the following collection:},
number = {1},
urldate = {2018-08-06},
journal = {Phys. Rev. Lett.},
author = {{SNO Collaboration} and Ahmad, Q. R. and Allen, R. C. and Andersen, T. C. and D.Anglin, J. and Barton, J. C. and Beier, E. W. and Bercovitch, M. and Bigu, J. and Biller, S. D. and Black, R. A. and Blevis, I. and Boardman, R. J. and Boger, J. and Bonvin, E. and Boulay, M. G. and Bowler, M. G. and Bowles, T. J. and Brice, S. J. and Browne, M. C. and Bullard, T. V. and Bühler, G. and Cameron, J. and Chan, Y. D. and Chen, H. H. and Chen, M. and Chen, X. and Cleveland, B. T. and Clifford, E. T. H. and Cowan, J. H. M. and Cowen, D. F. and Cox, G. A. and Dai, X. and Dalnoki-Veress, F. and Davidson, W. F. and Doe, P. J. and Doucas, G. and Dragowsky, M. R. and Duba, C. A. and Duncan, F. A. and Dunford, M. and Dunmore, J. A. and Earle, E. D. and Elliott, S. R. and Evans, H. C. and Ewan, G. T. and Farine, J. and Fergani, H. and Ferraris, A. P. and Ford, R. J. and Formaggio, J. A. and Fowler, M. M. and Frame, K. and Frank, E. D. and Frati, W. and Gagnon, N. and Germani, J. V. and Gil, S. and Graham, K. and Grant, D. R. and Hahn, R. L. and Hallin, A. L. and Hallman, E. D. and Hamer, A. S. and Hamian, A. A. and Handler, W. B. and Haq, R. U. and Hargrove, C. K. and Harvey, P. J. and Hazama, R. and Heeger, K. M. and Heintzelman, W. J. and Heise, J. and Helmer, R. L. and Hepburn, J. D. and Heron, H. and Hewett, J. and Hime, A. and Howe, M. and Hykawy, J. G. and Isaac, M. C. P. and Jagam, P. and Jelley, N. A. and Jillings, C. and Jonkmans, G. and Kazkaz, K. and Keener, P. T. and Klein, J. R. and Knox, A. B. and Komar, R. J. and Kouzes, R. and Kutter, T. and Kyba, C. C. M. and Law, J. and Lawson, I. T. and Lay, M. and Lee, H. W. and Lesko, K. T. and Leslie, J. R. and Levine, I. and Locke, W. and Luoma, S. and Lyon, J. and Majerus, S. and Mak, H. B. and Maneira, J. and Manor, J. and Marino, A. D. and McCauley, N. and McDonald, A. B. and McDonald, D. S. and McFarlane, K. and McGregor, G. and Meijer Drees, R. and Mifflin, C. and Miller, G. G. and Milton, G. and Moffat, B. A. and Moorhead, M. and Nally, C. W. and Neubauer, M. S. and Newcomer, F. M. and Ng, H. S. and Noble, A. J. and Norman, E. B. and Novikov, V. M. and O'Neill, M. and Okada, C. E. and Ollerhead, R. W. and Omori, M. and Orrell, J. L. and Oser, S. M. and Poon, A. W. P. and Radcliffe, T. J. and Roberge, A. and Robertson, B. C. and Robertson, R. G. H. and Rosendahl, S. S. E. and Rowley, J. K. and Rusu, V. L. and Saettler, E. and Schaffer, K. K. and Schwendener, M. H. and Schülke, A. and Seifert, H. and Shatkay, M. and Simpson, J. J. and Sims, C. J. and Sinclair, D. and Skensved, P. and Smith, A. R. and Smith, M. W. E. and Spreitzer, T. and Starinsky, N. and Steiger, T. D. and Stokstad, R. G. and Stonehill, L. C. and Storey, R. S. and Sur, B. and Tafirout, R. and Tagg, N. and Tanner, N. W. and Taplin, R. K. and Thorman, M. and Thornewell, P. M. and Trent, P. T. and Tserkovnyak, Y. I. and Van Berg, R. and Van de Water, R. G. and Virtue, C. J. and Waltham, C. E. and Wang, J.-X. and Wark, D. L. and West, N. and Wilhelmy, J. B. and Wilkerson, J. F. and Wilson, J. R. and Wittich, P. and Wouters, J. M. and Yeh, M.},
month = jun,
year = {2002},
pages = {011301},
file = {APS Snapshot:/home/moritz/Zotero/storage/LQTEK8S2/PhysRevLett.89.html:text/html;Full Text PDF:/home/moritz/Zotero/storage/QG2GXS6J/SNO Collaboration et al. - 2002 - Direct Evidence for Neutrino Flavor Transformation.pdf:application/pdf}
}
@book{spieler_semiconductor_2005,
address = {Oxford ; New York},
series = {Series on semiconductor science and technology},
title = {Semiconductor detector systems},
isbn = {978-0-19-852784-8},
number = {12},
publisher = {Oxford University Press},
author = {Spieler, Helmuth},
year = {2005},
note = {OCLC: ocm61302135},
keywords = {Semiconductor nuclear counters}
}
@misc{noauthor_decay_nodate,
title = {Decay {Scheme}},
url = {http://www.nndc.bnl.gov/chart/getdecayscheme.jsp?nucleus=85RB&dsid=85kr%20bM%20decay%20(10.739%20y)&unc=nds},
urldate = {2018-08-06},
file = {Decay Scheme:/home/moritz/Zotero/storage/D9DFPD9J/getdecayscheme.html:text/html}
}
@article{aalseth_search_2018,
title = {Search for {Zero}-{Neutrino} {Double} {Beta} {Decay} in 76Ge with the {Majorana} {Demonstrator}},
volume = {120},
issn = {0031-9007, 1079-7114},
url = {http://arxiv.org/abs/1710.11608},
doi = {10.1103/PhysRevLett.120.132502},
abstract = {The {\textbackslash}MJ{\textbackslash} Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-beta decay in \${\textasciicircum}\{76\}\$Ge. The {\textbackslash}MJ{\textbackslash} {\textbackslash}DEM{\textbackslash} comprises 44.1{\textasciitilde}kg of Ge detectors (29.7 kg enriched in \${\textasciicircum}\{76\}\$Ge) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at {\textbackslash}qval{\textbackslash} and a very low background with no observed candidate events in 10 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of \$1.9{\textbackslash}times10{\textasciicircum}\{25\}\$ yr (90{\textbackslash}\% CL). This result constrains the effective Majorana neutrino mass to below 240 to 520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is \$4.0\_\{-2.5\}{\textasciicircum}\{+3.1\}\$ counts/(FWHM t yr).},
number = {13},
urldate = {2018-08-06},
journal = {Physical Review Letters},
author = {Aalseth, C. E. and Abgrall, N. and Aguayo, E. and Alvis, S. I. and Amman, M. and Arnquist, I. J. and Avignone III, F. T. and Back, H. O. and Barabash, A. S. and Barbeau, P. S. and Barton, C. J. and Barton, P. J. and Bertrand, F. E. and Bode, T. and Bos, B. and Boswell, M. and Brodzinski, R. L. and Bradley, A. W. and Brudanin, V. and Busch, M. and Buuck, M. and Caldwell, A. S. and Caldwell, T. S. and Chan, Y.-D. and Christofferson, C. D. and Chu, P.-H. and Collar, J. I. and Combs, D. C. and Cooper, R. J. and Cuesta, C. and Detwiler, J. A. and Doe, P. J. and Dunmore, J. A. and Efremenko, Yu and Ejiri, H. and Elliott, S. R. and Fast, J. E. and Finnerty, P. and Fraenkle, F. M. and Fu, Z. and Fujikawa, B. K. and Fuller, E. and Galindo-Uribarri, A. and Gehman, V. M. and Gilliss, T. and Giovanetti, G. K. and Goett, J. and Green, M. P. and Gruszko, J. and Guinn, I. S. and Guiseppe, V. E. and Hallin, A. L. and Haufe, C. R. and Hehn, L. and Henning, R. and Hoppe, E. W. and Hossbach, T. W. and Howe, M. A. and Jasinski, B. R. and Johnson, R. A. and Keeter, K. J. and Kephart, J. D. and Kidd, M. F. and Knecht, A. and Konovalov, S. I. and Kouzes, R. T. and Lesko, K. T. and LaFerriere, B. D. and Leon, J. and Leviner, L. E. and Loach, J. C. and Lopez, A. M. and Luke, P. N. and MacMullin, J. and MacMullin, S. and Marino, M. G. and Martin, R. D. and Massarczyk, R. and McDonald, A. B. and Mei, D.-M. and Meijer, S. J. and Merriman, J. H. and Mertens, S. and Miley, H. S. and Miller, M. L. and Myslik, J. and Orrell, J. L. and O'Shaughnessy, C. and Othman, G. and Overman, N. R. and Pettus, W. and Phillips II, D. G. and Poon, A. W. P. and Perumpilly, G. and Pushkin, K. and Radford, D. C. and Rager, J. and Reeves, J. H. and Reine, A. L. and Rielage, K. and Robertson, R. G. H. and Ronquest, M. C. and Ruof, N. W. and Schubert, A. G. and Shanks, B. and Shirchenko, M. and Snavely, K. J. and Snyder, N. and Steele, D. and Suriano, A. M. and Tedeschi, D. and Tornow, W. and Trimble, J. E. and Varner, R. L. and Vasilyev, S. and Vetter, K. and Vorren, K. and White, B. R. and Wilkerson, J. F. and Wiseman, C. and Xu, W. and Yakushev, E. and Yaver, H. and Young, A. R. and Yu, C.-H. and Yumatov, V. and Zhitnikov, I. and Zhu, B. X. and Zimmermann, S.},
month = mar,
year = {2018},
note = {arXiv: 1710.11608},
keywords = {Physics - Instrumentation and Detectors, Nuclear Experiment},
file = {arXiv\:1710.11608 PDF:/home/moritz/Zotero/storage/ILT9HLXK/Aalseth et al. - 2018 - Search for Zero-Neutrino Double Beta Decay in 76Ge.pdf:application/pdf;arXiv.org Snapshot:/home/moritz/Zotero/storage/ENHADKAE/1710.html:text/html}
}
@article{dodd_a1_7_2011,
title = {A1\_7 {The} {Neutrino} {Problem}},
volume = {10},
copyright = {Copyright (c) 2016 Physics Special Topics},
url = {https://journals.le.ac.uk/ojs1/index.php/pst/article/view/2047},
abstract = {This report examines the premise from the movie "2012" (2009) that solar neutrinos start interacting with the core of the Earth, causing it to melt. A lower energy limit required for this interaction is found to be 9.55*10{\textasciicircum}4 GeVÂ and it is shown that the source of such energetic neutrinos is unlikely to be from within the solar system.},
language = {en},
number = {1},
urldate = {2018-08-06},
journal = {Physics Special Topics},
author = {Dodd, Peter and Kettle, Fraser and Webb, Alex and Bayliss, Martyn and Sukaitis, Tomas},
month = dec,
year = {2011},
file = {Full Text PDF:/home/moritz/Zotero/storage/LVQPPMLZ/Dodd et al. - 2011 - A1_7 The Neutrino Problem.pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/SK3GEWN4/2047.html:text/html}
}
@article{agostini_production_2015-1,
title = {Production, characterization and operation of \$\${\textasciicircum}\{\}\$\$ {Ge} enriched {BE} {Ge} detectors in {GERDA}},
volume = {75},
issn = {1434-6044, 1434-6052},
url = {https://link.springer.com/article/10.1140/epjc/s10052-014-3253-0},
doi = {10.1140/epjc/s10052-014-3253-0},
abstract = {The GERmanium Detector Array (Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay (0νββ0{\textbackslash}nu {\textbackslash}beta {\textbackslash}beta ) of 76{\textasciicircum}\{76\}Ge. Germanium detectors made of material with an enriched 76{\textasciicircum}\{76\}Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new 76{\textasciicircum}\{76\}Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the 76{\textasciicircum}\{76\}Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.},
language = {en},
number = {2},
urldate = {2018-08-06},
journal = {Eur. Phys. J. C},
author = {Agostini, M. and Allardt, M. and Andreotti, E. and Bakalyarov, A. M. and Balata, M. and Barabanov, I. and Barros, N. and Baudis, L. and Bauer, C. and Becerici-Schmidt, N. and Bellotti, E. and Belogurov, S. and Belyaev, S. T. and Benato, G. and Bettini, A. and Bezrukov, L. and Bode, T. and Borowicz, D. and Brudanin, V. and Brugnera, R. and Budjáš, D. and Caldwell, A. and Cattadori, C. and Chernogorov, A. and D’Andrea, V. and Demidova, E. V. and Domula, A. and Egorov, V. and Falkenstein, R. and Freund, K. and Frodyma, N. and Gangapshev, A. and Garfagnini, A. and Gotti, C. and Grabmayr, P. and Gurentsov, V. and Gusev, K. and Hegai, A. and Heisel, M. and Hemmer, S. and Heusser, G. and Hofmann, W. and Hult, M. and Inzhechik, L. V. and Ioannucci, L. and Csáthy, J. Janicskó and Jochum, J. and Junker, M. and Kazalov, V. and Kihm, T. and Kirpichnikov, I. V. and Kirsch, A. and Klimenko, A. and Knöpfle, K. T. and Kochetov, O. and Kornoukhov, V. N. and Kuzminov, V. V. and Laubenstein, M. and Lazzaro, A. and Lebedev, V. I. and Lehnert, B. and Liao, H. Y. and Lindner, M. and Lippi, I. and Lubashevskiy, A. and Lubsandorzhiev, B. and Lutter, G. and Macolino, C. and Majorovits, B. and Maneschg, W. and Misiaszek, M. and Nemchenok, I. and Nisi, S. and O’Shaughnessy, C. and Palioselitis, D. and Pandola, L. and Pelczar, K. and Pessina, G. and Pullia, A. and Riboldi, S. and Rumyantseva, N. and Sada, C. and Salathe, M. and Schmitt, C. and Schreiner, J. and Schulz, O. and Schütz, A.-K. and Schwingenheuer, B. and Schönert, S. and Shevchik, E. and Shirchenko, M. and Simgen, H. and Smolnikov, A. and Stanco, L. and Strecker, H. and Ur, C. A. and Vanhoefer, L. and Vasenko, A. A. and Sturm, K. von and Wagner, V. and Walter, M. and Wegmann, A. and Wester, T. and Wilsenach, H. and Wojcik, M. and Yanovich, E. and Zavarise, P. and Zhitnikov, I. and Zhukov, S. V. and Zinatulina, D. and Zuber, K. and Zuzel, G.},
month = feb,
year = {2015},
pages = {39},
file = {Full Text PDF:/home/moritz/Zotero/storage/8JBWZ5ET/Agostini et al. - 2015 - Production, characterization and operation of \$\$^ .pdf:application/pdf;Snapshot:/home/moritz/Zotero/storage/FQCSNMT2/10.html:text/html}
}