-
Notifications
You must be signed in to change notification settings - Fork 150
/
Copy pathsetup.py
66 lines (54 loc) · 2.26 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from setuptools import setup, find_packages
from os import path
import glob
from mushroom_rl import __version__
def glob_data_files(data_package, data_type=None):
data_type = '*' if data_type is None else data_type
data_dir = data_package.replace(".", "/")
data_files = []
directories = glob.glob(data_dir+'/**/', recursive=True)
for directory in directories:
subdir = directory[len(data_dir)+1:]
if subdir != "":
files = subdir + data_type
data_files.append(files)
return data_files
here = path.abspath(path.dirname(__file__))
extras = {
'gym': ['gym==0.24.1'],
'atari': ['ale-py==0.7.5', 'Pillow', 'opencv-python'],
'box2d': ['box2d-py~=2.3.5'],
'bullet': ['pybullet'],
'mujoco': ['mujoco>=2.3', 'dm_control>=1.0.9'],
'plots': ['pyqtgraph']
}
all_deps = []
for group_name in extras:
if group_name not in ['plots','box2d']:
all_deps += extras[group_name]
extras['all'] = all_deps
print(extras['all'])
long_description = 'MushroomRL is a Python Reinforcement Learning (RL) library' \
' whose modularity allows to easily use well-known Python' \
' libraries for tensor computation (e.g. PyTorch, Tensorflow)' \
' and RL benchmarks (e.g. OpenAI Gym, PyBullet, Deepmind' \
' Control Suite). It allows to perform RL experiments in a' \
' simple way providing classical RL algorithms' \
' (e.g. Q-Learning, SARSA, FQI), and deep RL algorithms' \
' (e.g. DQN, DDPG, SAC, TD3, TRPO, PPO). Full documentation' \
' available at http://mushroomrl.readthedocs.io/en/latest/.'
mujoco_data_package = 'mushroom_rl.environments.mujoco_envs.data'
pybullet_data_package = 'mushroom_rl.environments.pybullet_envs.data'
setup(
version=__version__,
author="Carlo D'Eramo, Davide Tateo",
url="https://github.com/MushroomRL",
long_description=long_description,
packages=[package for package in find_packages()
if package.startswith('mushroom_rl')],
extras_require=extras,
package_data={
mujoco_data_package: glob_data_files(mujoco_data_package),
pybullet_data_package: glob_data_files(pybullet_data_package)
}
)