-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
516 lines (406 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"""
Copyright (c) 2017 NCATS Data Translator Project - Tangerine Team
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from flask import Flask
from flask import request
from flask import jsonify
from flask import abort
import requests
from ontobio.golr.golr_query import GolrSearchQuery
from ontobio.golr.golr_query import GolrAssociationQuery
from ontobio.config import session
from .biolink import BiolinkTerm
# Set absolute path of configuration file
import os
abspath = os.path.abspath(os.path.dirname(__file__))
session.default_config_path = abspath + '/conf/config.yaml'
app = Flask(__name__)
@app.route('/')
def hello_world():
response = {}
response['wraps'] = 'https://api.monarchinitiative.org/api/'
response['name'] = 'Monarch Biolink Knowledge Beacon'
response['github'] = 'https://github.com/NCATS-Tangerine/biolink-beacon'
return jsonify(response)
@app.route('/concepts/')
@app.route('/concepts')
def get_concepts():
keywords = request.args.get('keywords', None)
semanticGroups = request.args.get('semanticGroups', None)
pageSize = int(request.args.get('pageSize', 1))
pageNumber = int(request.args.get('pageNumber', 1))
validatePagination(pageSize, pageNumber)
validateKeywords(keywords)
q = GolrSearchQuery(
term=keywords,
category=build_categories(semanticGroups),
rows=pageSize,
start=getStartIndex(pageNumber, pageSize)
)
results = q.exec()
concepts = []
for d in results['docs']:
concept = parse_concept(d)
concepts.append(concept)
return jsonify(concepts)
@app.route('/concepts/<string:conceptId>/')
@app.route('/concepts/<string:conceptId>')
def get_concept_details(conceptId):
if BiolinkTerm.isCurie(conceptId):
conceptId = objectId(conceptId)
results = GolrSearchQuery(
term=conceptId,
fq={'id' : conceptId},
rows=1,
hl=False
).exec()
entries = []
for d in results['docs']:
c = parse_concept(d)
details = {}
details['iri'] = get_concept_property(d, 'iri')
details['taxon'] = get_concept_property(d, 'taxon')
details['taxon_label'] = get_concept_property(d, 'taxon_label')
details['taxon_label_synonym'] = get_concept_property(d, 'taxon_label_synonym')
if details['taxon_label_synonym'] is not None:
details['taxon_label_synonym'] = ', '.join(details['taxon_label_synonym'])
c['details'] = [{'tag' : k, 'value' : v} for k, v in details.items() if v is not None]
entries += [c]
return jsonify(entries)
def get_concept(conceptId):
if BiolinkTerm.isCurie(conceptId):
conceptId = objectId(conceptId)
results = GolrSearchQuery(
term=conceptId,
fq={'id' : conceptId},
rows=1,
hl=False
).exec()
c = None
entries = []
for d in results['docs']:
c = parse_concept(d)
break
return c
@app.route('/statements/')
@app.route('/statements')
def get_statements():
s = getlist('s')
relations = request.args.get('relations', None)
t = getlist('t')
keywords = request.args.get('keywords', None)
semanticGroups = request.args.get('semanticGroups', None)
pageSize = int(request.args.get('pageSize', 1))
pageNumber = int(request.args.get('pageNumber', 1))
validatePagination(pageNumber, pageSize)
validateIdList(s)
if t == None or len(t) == 0: t = None
# query 'source' set as subject
qSub = GolrAssociationQuery(
subjects=s,
objects=t,
object_category=build_categories(semanticGroups),
relation=get_relation(relations), # Currently only first relation in the list, if any, is taken?
rows=pageSize,
start=getStartIndex(pageNumber, pageSize),
non_null_fields=['subject','relation','object']
)
subStmts = qSub.exec()
# query 'source' set as subject
qObj = GolrAssociationQuery(
objects=s,
subjects=t,
subject_category=build_categories(semanticGroups),
relation=get_relation(relations), # Currently only first relation in the list, if any, is taken?
rows=pageSize,
start=getStartIndex(pageNumber, pageSize),
non_null_fields=['subject','relation','object']
)
objStmts = qObj.exec()
# Merge two dictionaries
results = { **subStmts, **objStmts }
print("statement results: "+str(len(results))+" items found?")
key_pairs = { 'id' : 'id', 'name' : 'label' }
statements = []
for d in results['associations']:
try:
statement = {}
statement['id'] = BiolinkTerm.prefix()+":"+ d['id'] # add the Biolink prefix to statement id's
statement['object'] = {k1 : d['object'][k2] for k1, k2 in key_pairs.items() }
statement['object'] = get_concept(statement['object']['id'])
statement['subject'] = {k1 : d['subject'][k2] for k1, k2 in key_pairs.items() }
statement['subject'] = get_concept(statement['subject']['id'])
statement['predicate'] = {k1 : d['relation'][k2] for k1, k2 in key_pairs.items() }
statements.append(statement)
except:
pass
return jsonify(statements)
@app.route('/evidence/<string:statementId>/')
@app.route('/evidence/<string:statementId>')
def get_evidence(statementId):
if statementId.startswith(BiolinkTerm.prefix()):
statementId = BiolinkTerm.getCurieObjectId(statementId)
evidences = []
results = GolrAssociationQuery(id=statementId).exec()
associations = results['associations']
for association in associations:
publications = association.get('publications', None)
if publications != None:
for publication in publications:
evidence = {}
evidence['id'] = publication.get('id', '')
evidence['label'] = publication.get('label', 'PubMed article')
evidence['date'] = '0000-0-00'
evidences.append(evidence)
# If the statement is found but has no associated publication, give a
# generic response for evidence.
if len(evidences) == 0 and len(associations) != 0:
evidence = {}
evidence['id'] = ''
evidence['date'] = '0000-00-00'
evidence['label'] = 'From the Monarch Initiative - No further supporting text'
evidences.append(evidence)
print(evidences)
return jsonify(evidences)
@app.route('/exactmatches/<string:conceptId>/')
@app.route('/exactmatches/<string:conceptId>')
def get_exactmatches_by_conceptId(conceptId):
return jsonify(find_exactmatches(conceptId))
@app.route('/exactmatches/')
@app.route('/exactmatches')
def get_exactmatches_by_concept_id_list():
c = getlist('c')
validateIdList(c)
exactmatches = []
for conceptId in c:
exactmatches += find_exactmatches(conceptId)
return jsonify(exactmatches)
@app.route('/types/')
@app.route('/types')
def get_types():
frequency = {semanticGroup : 0 for semanticGroup in semantic_mapping.keys()}
results = GolrAssociationQuery(
rows=0,
facet_fields=['subject_category', 'object_category']
).exec()
facet_counts = results['facet_counts']
subject_category = facet_counts['subject_category']
object_category = facet_counts['object_category']
for key in subject_category:
frequency[monarch_to_UMLS(key)] += subject_category[key]
for key in object_category:
frequency[monarch_to_UMLS(key)] += object_category[key]
return jsonify([{'id' : c, 'idmap' : None, 'frequency' : f} for c, f in frequency.items()])
@app.route('/predicates/')
@app.route('/predicates')
def get_predicates():
"""
I'm not quite sure how to best get at all the predicates and tag them as relations with id's
"""
"""
results = GolrAssociationQuery(
rows=0,
facet_fields=['relation']
).exec()
facet_counts = results['facet_counts']
relations = facet_counts['relation']
return jsonify([{'id' : BiolinkTerm(c).curie(), 'name' : c, 'definition' : None} for key in relations])
"""
# Not yet implemented... don't really know how
return jsonify([])
def find_exactmatches(conceptId):
"""
Returns a list of concept ID's that are exact matches for the given conceptId
"""
results = GolrSearchQuery(
term=conceptId,
fq={'id' : conceptId},
rows=1,
hl=False
).exec()
docs = results['docs']
for d in docs:
if get_concept_property(d, 'id') == conceptId:
exactmatches = get_concept_property(d, 'equivalent_curie')
if exactmatches == None:
exactmatches = [] # just in case this property is empty
exactmatches.append(conceptId)
return exactmatches if exactmatches != None else []
return []
def get_concept_property(d, key):
"""
Exhausts each affix before returning an empty string.
Parameters
----------
d : dict
representing a monarch bioentity
key : str
the key of the property to be obtained
"""
affixes = ['_eng', '_std', '_kw']
try:
return d[key]
except:
for affix in affixes:
try:
return d[key + affix]
except:
pass
return None
def parse_concept(d):
"""
Returns a dict in the form of a tkbio concept
Parameters
----------
d : dict
representing a monarch bioentity
"""
key_pairs = {
'id' : 'id',
'synonyms' : 'synonym',
'definition' : 'definition',
'semanticGroup' : 'category',
'name' : 'label'
}
concept = { k1 : get_concept_property(d, k2) for k1, k2 in key_pairs.items() }
# These properties are sometimes encoded as lists, but we need them to be strings
keys = 'definition', 'semanticGroup', 'name'
for key in keys:
if isinstance(concept[key], list):
concept[key] = ', '.join(concept[key])
# Sometimes bioentities have a 'categories' rather than 'category' field
categories = d.get('categories', None)
if concept['semanticGroup'] is None and categories is not None:
concept['semanticGroup'] = ' '.join(monarch_to_UMLS(categories))
else:
concept['semanticGroup'] = monarch_to_UMLS(concept['semanticGroup'])
if concept['definition'] is None:
concept['definition'] = ""
if concept['synonyms'] == None:
concept['synonyms'] = []
return concept
def build_categories(semanticGroups):
"""
Returns a list of ontobio categories or None
Parameters
----------
semanticGroups : string
a space delimited collection of semanticGroups
"""
if semanticGroups is None:
return None
categories = []
for semanticGroup in semanticGroups.split(' '):
try:
categories += UMLS_to_monarch(semanticGroup.upper())
except:
None
if len(categories) == 0:
return None
else:
return categories
def get_relation(relations):
"""
Returns first entry in the list of relations or None
Parameters
----------
relations : string
a space delimited collection of relation id's... but I only teke the first one?
"""
if relations is None:
return None
relation = None
for relationId in relations.split(' '):
try:
relation = objectId(relationId)
break # only first relation taken for now?
except:
None
if relation == None:
return None
else:
return relation
def objectId(id):
idPart = id.split(":")
id = idPart[1]
return id
# TODO: Make sure that this mapping makes sense!
# https://github.com/monarch-initiative/SciGraph-docker-monarch-data/blob/master/src/main/resources/monarchLoadConfiguration.yaml.tmpl#L74-L113
semantic_mapping = {
'GENE' : ['gene', 'genotype', 'reagent targeted gene', 'intrinsic genotype', 'extrinsic genotype', 'effective genotype', 'haplotype', 'chromosome'],
'ANAT' : ['anatomical entity', 'cellular component'],
'LIVB' : ['cell', 'multi-cellular organism', 'organism'],
'OBJC' : ['quality', 'cell line', 'molecular entity', 'variant locus', 'sequence alteration', 'sequence feature', 'evidence', 'pathway', 'publication', 'case', 'association'],
'DISO' : ['disease'],
'PROC' : ['assay'],
'CONC' : ['age'],
'CHEM' : ['drug', 'protein'],
'PHYS' : ['Phenotype', 'molecular function'],
'PHEN' : ['biological process'],
# Nothing fits in these categories?
'ACTI' : [''],
'DEVI' : [''],
'GEOG' : [''],
'OCCU' : [''],
'ORGA' : ['']
}
def UMLS_to_monarch(semanticGroup):
if semanticGroup is None: return None
if isinstance(semanticGroup, (list, set)):
return list({ UMLS_to_monarch(c) for c in semanticGroup })
else:
# None translates to any semantic category, an empty string translates
# to no semantic category.
return semantic_mapping.get(semanticGroup.upper(), '')
def monarch_to_UMLS(category):
if category is None: return 'OBJC'
if isinstance(category, (list, set)):
return list({ monarch_to_UMLS(c) for c in category })
else:
for key, value in semantic_mapping.items():
if category in value:
return key
return 'OBJC'
def getStartIndex(pageNumber, pageSize):
"""
Monarch begins its indexing at zero, and start refers to the index of
the data rather than the page number. This method calculates the start index
from the pageNumber and pageSize
"""
return (pageNumber - 1) * pageSize
def getlist(param_name):
"""
Flask only handles lists like /statements?c=ABC&c=DEF&c=GHI
But at the moment TKBio is formatting lists like /statements?c=ABC,DEF,GHI
"""
l = request.args.getlist(param_name)
c = []
for item in l:
c += item.split(',')
return [item.strip() for item in c]
def validatePagination(pageSize, pageNumber):
if pageSize < 1:
abort(500, 'pageSize must be greater than zero')
if pageNumber < 1:
abort(500, 'pageNumber must be greater than zero')
def validateKeywords(keywords):
if keywords is None:
abort(500, 'keywords must not be empty')
def validateIdList(c):
if c is []:
abort(500, 'list c must not be empty')