-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDESeq.sh
executable file
·37 lines (30 loc) · 1.37 KB
/
DESeq.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#!/usr/bin/env Rscript
#source("http://bioconductor.org/biocLite.R")
#biocLite(c("DESeq2","ggplot2","gplots"))
library(DESeq2)
library(ggplot2)
library(gplots)
## Download necessary modules
samples=read.table("$1",sep="\t",header=FALSE)
countdata <- read.table("$2",sep="\t",header=TRUE)
rownames(countdata)=countdata[,1]
counts=countdata[,-1]
#counts=countdata$counts
#colnames(counts) <- gsub("\\.[sb]am$", "", colnames(counts))
condition <- factor(c(rep("C", length(samples[samples$V2 == "Control",])), rep("T", length(samples[samples$V2 =="Case",]))))
coldata <- data.frame(row.names=colnames(counts), condition)
dds <- DESeqDataSetFromMatrix(countData=counts, colData=coldata, design=~condition)
rld <- rlogTransformation(dds)
dds=DESeq(dds)
res <- results(dds)
res <- res[order(res$padj), ]
resdata <- merge(as.data.frame(res), as.data.frame(counts(dds, normalized=TRUE)), by="row.names", sort=FALSE)
write.table(resdata,"DGEtable.txt",sep="\t",row.names = T,col.names = T)
##plot PCA
#options(device=png)
#plotPCA(rld, intgroup="condition")
data <- plotPCA(rld, intgroup="condition", returnData=TRUE)
percentVar <- round(100 * attr(data, "percentVar"))
bitmap(file ="PCA.jpg",type="jpeg")
ggplot(data, aes(PC1, PC2, color=condition)) + geom_point(size=3) + xlab(paste0("PC1: ",percentVar[1],"% variance")) + ylab(paste0("PC2: ",percentVar[2],"% variance")) + coord_fixed()
dev.off()