diff --git a/R/calc_concentration_response.R b/R/calc_concentration_response.R index 49f5c97..cb40d47 100644 --- a/R/calc_concentration_response.R +++ b/R/calc_concentration_response.R @@ -33,9 +33,7 @@ calc_concentration_response <- function(C_invitro, # Calculate response for each assay lapply(C_invitro, \(C_invitro_i) { lapply(hill_params, \(hill_params_j) { - if (ncol(C_invitro_i) == 1 & nrow(hill_params_j) == 1) { - .calc_concentration_response(C_invitro_i, hill_params_j, max_mult, fixed) - } else { + if (ncol(C_invitro_i) != 1 | nrow(hill_params_j) != 1) { if (!"chem" %in% names(hill_params_j)) { stop("'hill_params' must contain a 'chem' column", call. = FALSE) } @@ -44,17 +42,17 @@ calc_concentration_response <- function(C_invitro, stop("'hill_params' chemicals missing in 'C_invitro'", call. = FALSE) } C_invitro_i <- C_invitro_i[, chems, drop = FALSE] - res <- .calc_concentration_response(C_invitro_i, - hill_params_j, - max_mult, - fixed) |> - dplyr::mutate(sample = dplyr::row_number(), .before = 1) - if ("assay" %in% names(hill_params_j)) { - res <- res |> - dplyr::mutate(assay = hill_params_j$assay[[1]], .before = 1) - } - res } + res <- .calc_concentration_response(C_invitro_i, + hill_params_j, + max_mult, + fixed) |> + dplyr::mutate(sample = dplyr::row_number(), .before = 1) + if ("assay" %in% names(hill_params_j)) { + res <- res |> + dplyr::mutate(assay = hill_params_j$assay[[1]], .before = 1) + } + res }) |> dplyr::bind_rows() }) @@ -144,7 +142,6 @@ calc_concentration_response <- function(C_invitro, } - data.frame( "GCA.Eff" = GCA.eff, "IA.Eff" = IA.eff, "GCA.HQ.10" = GCA.HQ.10, "IA.HQ.10" = IA.HQ.10 diff --git a/tests/testthat/test-calc_concentration_response.R b/tests/testthat/test-calc_concentration_response.R index 14a8091..83b8cb9 100644 --- a/tests/testthat/test-calc_concentration_response.R +++ b/tests/testthat/test-calc_concentration_response.R @@ -1,49 +1,131 @@ -test_that("mixture calculation for errors from bad inputs", { - # errors from bad input - - # errors from bad order - +test_that("C_invitro with basic hill_params", { + + col_names <- c("sample", "GCA.Eff", "IA.Eff", "GCA.HQ.10", "IA.HQ.10") + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1), resp = c(10, 5, 0))) + + C_invitro <- matrix(0) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(col_names %in% names(out[[1]]))) + expect_true(all(unname(out[[1]]) == c(1, NA, NA, NA, NA))) + + C_invitro <- matrix(1) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(col_names %in% names(out[[1]]))) + + C_invitro <- matrix(1:4, ncol = 1) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(col_names %in% names(out[[1]]))) + + C_invitro <- list(matrix(1)) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(col_names %in% names(out[[1]]))) + + C_invitro <- list(matrix(1:4), matrix(5:8)) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_length(out, 2) + expect_true(all(col_names %in% names(out |> do.call(what = rbind)))) + + C_invitro <- matrix(1:4, ncol = 2) + # hill_params needs "chem" column if C_invitro has > 1 row + expect_error(calc_concentration_response(C_invitro, hill_params)) }) - -test_that("calc_concentration_response is valid with simulated data", { - - - # Set up a mixture concentration-response - conc <- seq(0,1,by = 0.1) - - - - # +test_that("hill_params 'chem'", { + + col_names <- c("GCA.Eff", "IA.Eff", "GCA.HQ.10", "IA.HQ.10") + + # Single chemical + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1), + resp = c(10, 5, 0), + chem = rep("c1", each = 3)), + chem = "chem") + + C_invitro <- matrix(1:4, ncol = 1) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(c(col_names, "sample") %in% names(out[[1]]))) + expect_true(nrow(out[[1]]) == 4) + + # Multiple chemicals + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1, -2, -1, 0), + resp = c(10, 5, 0, 0, 1, 2), + chem = rep(c("c1", "c2"), each = 3)), + chem = "chem") + + C_invitro <- matrix(1:4, ncol = 2) + expect_error(calc_concentration_response(C_invitro, hill_params)) + + colnames(C_invitro) <- c("c1", "c2") + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(c(col_names, "sample") %in% names(out[[1]]))) + expect_true(nrow(out[[1]]) == 2) }) -test_that("calc_concentration_response is valid with ICE data", { - - # Set up a mixture concentration-response from ICE - ice_data <- geo_tox_data$ice - - conc <- seq(0,1,by = 0.1) - - - - # +test_that("hill_params 'assay'", { + + col_names <- c("GCA.Eff", "IA.Eff", "GCA.HQ.10", "IA.HQ.10") + + # Single assay + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1), + resp = c(10, 5, 0), + assay = rep("a1", each = 3)), + assay = "assay") + + C_invitro <- matrix(1:4, ncol = 1) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(c(col_names, "assay") %in% names(out[[1]]))) + expect_true(nrow(out[[1]]) == 4) + + # Multiple assays + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1, -2, -1, 0), + resp = c(10, 5, 0, 0, 1, 2), + assay = rep(c("a1", "a2"), each = 3)), + assay = "assay") + + C_invitro <- matrix(1:4, ncol = 1) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(c(col_names, "assay") %in% names(out[[1]]))) + expect_true(nrow(out[[1]]) == 8) }) +test_that("hill_params 'assay' and 'chem'", { + + col_names <- c("GCA.Eff", "IA.Eff", "GCA.HQ.10", "IA.HQ.10") + + df <- data.frame(logc = rep(c(-1, 0, 1, -2, -1, 0), times = 2), + resp = rep(c(10, 5, 0, 0, 1, 2), times = 2), + chem = rep(rep(c("c1", "c2"), each = 3), times = 2), + assay = rep(rep(c("a1", "a2"), each = 6))) + hill_params <- fit_hill(df, chem = "chem", assay = "assay") + + C_invitro <- matrix(1:4, ncol = 2, dimnames = list(NULL, c("c1", "c2"))) + + expect_no_error(out <- calc_concentration_response(C_invitro, hill_params)) + expect_true(all(c(col_names, "assay", "sample") %in% names(out[[1]]))) + expect_true(nrow(out[[1]]) == 4) +}) - -test_that("calc_independent_action scales to Emax", { - - - x <- data.frame(AGEGRP = 0:18, TOT_POP = c(sum(1:18), 1:18)) - ages_test <- simulate_age(x, 10)[[1]] - - - # age sample is of size "n" - expect_vector(ages_test,size = 10) - - # age samples are within allowed age range [0,90] t - expect_true(all(ages_test < 90 & ages_test >= 0)) - - - # +test_that("other inputs", { + + hill_params <- fit_hill(data.frame(logc = c(-1, 0, 1), resp = c(10, 5, 0))) + C_invitro <- matrix(1) + + expect_no_error(calc_concentration_response(C_invitro, + hill_params, + max_mult = 1.1)) + expect_no_error(calc_concentration_response(C_invitro, + hill_params, + fixed = TRUE)) })