-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtasks.py
164 lines (133 loc) · 6.91 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import redis
import pandas as pd
import numpy as np
import json
from celery import Celery
from celery.schedules import crontab
from celery.utils.log import get_task_logger
from random import randrange
import constants
import db
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
logger = get_task_logger(__name__)
celery_app = Celery('tasks', broker=os.environ.get("REDIS_URL", "redis://127.0.0.1:6379"))
@celery_app.on_after_configure.connect
def setup_periodic_tasks(sender, **kwargs):
#
# N.B. If the database exists when this runs
# it's a no-op and that gets noted in the log.
sender.add_periodic_task(
crontab(hour='*', minute='45'),
load_observations.s(),
name='Initial Load of Observations'
)
sender.add_periodic_task(
crontab(hour='*', minute='45'),
append_new_observations.s(),
name='Append New Observations'
)
sender.add_periodic_task(
crontab(hour='1'),
trim_database.s(),
name='Delete observations older than 45 days'
)
@celery_app.task
def load_observations(force=False):
if force or not db.exists():
url = 'https://data.pmel.noaa.gov/pmel/erddap/tabledap/osmc_rt_60.csv?' + constants.all_variables_comma_separated + '&time>=now-45days'
logger.info('Reading data from ' + url)
df = pd.read_csv(url, skiprows=[1], dtype=constants.dtypes, parse_dates=True)
df = df.dropna(subset=['latitude','longitude'], how='any')
df = df.query('-90.0 <= latitude <= 90')
df = df.sort_values('time')
df.reset_index(drop=True, inplace=True)
df.loc[:,'millis'] = pd.to_datetime(df['time']).view(np.int64)
df.loc[:,'text_time'] = df['time'].astype(str)
# ['platform_type', 'text_time', 'latitude', 'longitude', 'platform_code', 'country'],
df.loc[:,'trace_text'] = df['text_time'] + "<br>" + df['platform_type'] + "<br>" + df['country'] + "<br>" + df['platform_code']
logger.info('Preparing sub-sets for locations and counts.', )
locations_df = df.groupby('platform_code', as_index=False).last()
counts_df = df.groupby('platform_code').count()
counts_df.reset_index(inplace=True)
logger.info('Found ' + str(df.shape[0]) + ' observations to store.')
# In the following command, we are saving the updated new data to the dataset_table using pandas
# and the SQLAlchemy engine we created above. When if_exists='append' we add the rows to our table
# and when if_exists='replace', a new table overwrites the old one.
logger.info('Updating data...')
df.to_sql(constants.data_table, constants.postgres_engine, if_exists='replace', index=False, chunksize=10000, method=None)
logger.info('Updating counts...')
counts_df.to_sql(constants.counts_table, constants.postgres_engine, if_exists='replace', index=False)
logger.info('Updating locations...')
locations_df.to_sql(constants.locations_table, constants.postgres_engine, if_exists='replace', index=False)
else:
logger.info('Database already exists. Updates will come from periodic tasks.')
@celery_app.task
def trim_database():
db.trim(45)
@celery_app.task
def append_new_observations():
url = 'https://data.pmel.noaa.gov/pmel/erddap/tabledap/osmc_rt_60.csv?' + constants.all_variables_comma_separated + '&time>=now-14days'
logger.info('Reading data from ' + url)
df = pd.read_csv(url, skiprows=[1], dtype=constants.dtypes, parse_dates=True)
df = df.dropna(subset=['latitude','longitude'], how='any')
df = df.query('-90.0 <= latitude <= 90')
df = df.sort_values('time')
df.reset_index(drop=True, inplace=True)
df.loc[:,'millis'] = pd.to_datetime(df['time']).view(np.int64)
df.loc[:,'text_time'] = df['time'].astype(str)
df.loc[:,'trace_text'] = df['text_time'] + "<br>" + df['platform_type'] + "<br>" + df['country'] + "<br>" + df['platform_code']
columns = df.columns
df = df.assign(source='erddap')
logger.info('read ' + str(df.shape[0]) + ' potential new observations')
for days in range(0,9):
ago1 = 45-((days+1)*5)
ago2 = 45-(days*5)
logger.info('checking for duplicates in days: ' + str(ago1) + ' to ' + str(ago2) + ' ago.' )
stored_df = db.get_between_days_ago(ago1, ago2)
stored_df = stored_df.assign(source='db')
logger.info(str(stored_df.shape[0]) + ' obervations found in database.')
df = pd.concat([stored_df, df])
df.reset_index(inplace=True, drop=True)
PRECISION = 3
df.drop(df[['latitude', 'longitude', 'observation_depth','millis']].round(PRECISION).duplicated().loc[lambda latitude: latitude].index, inplace=True)
df = df[df['source']=='erddap']
logger.info(str(df.shape[0]) + ' observations that are not stored remain after checking this day range.')
df = df[columns]
df = df.dropna(subset=['latitude','longitude'], how='any')
df = df.query('-90.0 <= latitude <= 90')
df = df.sort_values('time')
df.reset_index(drop=True, inplace=True)
logger.info('First row=')
logger.info(df.iloc[0])
logger.info('Last row=')
logger.info(df.iloc[-1])
logger.info('Found ' + str(df.shape[0]) + ' new observations to append.')
# In the following command, we are saving the updated new data to the dataset_table using pandas
# and the SQLAlchemy engine we created above. When if_exists='append' we add the rows to our table
# and when if_exists='replace', a new table overwrites the old one.
logger.info('Updating data...')
if df.shape[0] > 0:
df.to_sql(constants.data_table, constants.postgres_engine, if_exists='append', index=False, chunksize=1500, method=None)
# These are small and should be made to match the data in the database, so replace them
df = db.get_data(None)
logger.info('Preparing sub-sets for locations and counts.')
locations_df = df.groupby('platform_code', as_index=False).last()
counts_df = df.groupby('platform_code').count()
counts_df.reset_index(inplace=True)
logger.info('Updating counts...')
counts_df.to_sql(constants.counts_table, constants.postgres_engine, if_exists='replace', index=False)
logger.info('Updating locations...')
locations_df.to_sql(constants.locations_table, constants.postgres_engine, if_exists='replace', index=False)
@celery_app.task
def counts_and_location():
df = db.get_data(None)
logger.info('Preparing sub-sets for locations and counts.')
locations_df = df.groupby('platform_code', as_index=False).last()
counts_df = df.groupby('platform_code').count()
counts_df.reset_index(inplace=True)
logger.info('Updating counts...')
counts_df.to_sql(constants.counts_table, constants.postgres_engine, if_exists='replace', index=False)
logger.info('Updating locations...')
locations_df.to_sql(constants.locations_table, constants.postgres_engine, if_exists='replace', index=False)