forked from NOAA-PSL/model_error_correction
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocess.py
124 lines (101 loc) · 6.47 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Loading package
import itertools
import time
import sys
from joblib import Parallel, delayed
import pandas as pd
import xarray as xr
import numpy as np
# which components should be processed
ATM=True
NORMALIZE=True
dataDir='/scratch2/BMC/gsienkf/Sergey.Frolov/fromStefan/' # directory for input data
npyDir=dataDir+'npys_sergey3/ifs' # output directory
def preprocess():
'''preprocess the replay dataset from the nc files of reduced dataset into numpy arrays'''
time_scales=[1,365] # include hour of the day and day of the year info
vars_in=['tmp','ugrd','vgrd','spfh','pressfc'] # input forecast variables
vars_out=['tmp','ugrd','vgrd','spfh','pressfc'] # output variables
sfc_vars=['csdlf','csdsf','csulf','csulftoa','csusf','csusftoa','land'] # boundary condition variables from surface file
dates = [d for d in pd.date_range('2018-01-01T00', '2020-12-31T12', freq='6H')] # preprocess data range
date_in=[] # container for time info
for date in dates:
date_j = date.to_julian_date() # convert to julian date format
time_sin = [np.sin(date_j*2*np.pi/period) for period in time_scales] #25,26 # sine wave with frequencies in time_scales
time_cos = [np.cos(date_j*2*np.pi/period) for period in time_scales] #27,28 # cosine wave with frequencies in time_scales
time_h_m = [date.hour, date.month] #29,30 # raw hour and month info
date_in.append(time_sin+time_cos+time_h_m)
date_in = np.array(date_in, dtype=np.float32)
# get latlon info from a sample data
sample = xr.open_dataset(dataDir+'/2019122000/sfg_2019122000_fhr06_control_sub')
lons_d = sample.grid_xt
lats_d = sample.grid_yt
lons_m, lats_m = np.meshgrid(lons_d, lats_d) # get raw gridded lat and lon
lons_sin = np.sin(lons_m*2*np.pi/360) # get sine of lon so that it is continueous between 0 and 360
lons_cos = np.cos(lons_m*2*np.pi/360) # get cosine of lon so that it is continueous between 0 and 360
nlon = len(lons_d)
nlat = len(lats_d)
ndates = len(dates)
nlevs = len(sample.pfull)
sfc_size = len(sfc_vars)+2+2+6 # lon, lat, lon_sin, lon_cos, time6
varin_size = nlevs*4+1+sfc_size
varout_size = nlevs*4+1
print(f"nlat={nlat}, nlon={nlon}")
print("sfc size: {}, var in size: {}, var out size: {}, date size: {}".format(sfc_size, varin_size, varout_size, ndates))
# prepare numpy array files in memory-map mode cause the full data is too large to live in memory.
if ATM:
# atmospheric forecast
f06_sub = np.lib.format.open_memmap(npyDir+'_f06_ranl_sub', mode='w+',shape=(ndates,varin_size, nlat,nlon), dtype=np.float32)
if NORMALIZE:
f06_sub_mean = np.load(npyDir+'_f06_ranl_sub_mean_1d.npy')
f06_sub_std = np.load(npyDir+'_f06_ranl_sub_std_1d.npy')
else:
f06_sub_mean = np.zeros((varin_size,), dtype=np.float32)
f06_sub_std = np.ones((varin_size,), dtype=np.float32)
# increment
inc_sub = np.lib.format.open_memmap(npyDir+'_out_ranl_sub', mode='w+',shape=(ndates,varout_size,nlat,nlon), dtype=np.float32)
if NORMALIZE:
inc_sub_mean = np.load(npyDir+'_out_ranl_sub_mean_1d.npy')
inc_sub_std = np.load(npyDir+'_out_ranl_sub_std_1d.npy')
else:
inc_sub_mean = np.zeros((varout_size,), dtype=np.float32)
inc_sub_std = np.ones((varout_size,), dtype=np.float32)
def write(index_d, date):
'''writing data into the numpy array files'''
print(date)
YYYYMMDDHH = date.strftime('%Y%m%d%H') # current datetime
PYYYYMMDDHH = (date + pd.Timedelta('6H')).strftime('%Y%m%d%H') # current datetime + 6h
for suf, f06, inc in zip(['sub'],[f06_sub],[inc_sub]): # loop through sub (subsampled)
vals_f = []
vals_i = []
file_f = xr.open_dataset('{}/{}/sfg_{}_fhr06_control_{}'.format(dataDir,YYYYMMDDHH,YYYYMMDDHH,suf)) # read forecast file
file_a = xr.open_dataset('{}/{}/sfg_{}_fhr00_control_{}'.format(dataDir,PYYYYMMDDHH,PYYYYMMDDHH,suf)) # read analysis file
file = xr.open_dataset('{}/{}/bfg_{}_fhr06_control_{}'.format(dataDir,YYYYMMDDHH,YYYYMMDDHH,suf)) # read boundary condition from file
for var in vars_in: # loop through the variables
val_f = file_f[var].values[0]
if np.in1d(var,vars_out)[0]:
val_i = file_a[var].values[0] - val_f # compute increment (a-f)
if (var == 'pressfc'):
val_i = val_i[None] # add nex axis for surface pressure data to align with other variables
vals_i.append(val_i)
if (var == 'pressfc'):
val_f = np.log(val_f)[None] # compute log(Ps) for forecast and add new axis
if (var == 'dpres'):
# compute cummulative pressure from surface for each level
val_f = np.cumsum(np.concatenate([val_f, np.zeros((1,nlat,nlon))],axis=0)[::-1],axis=1)[::-1]
val_f = -(val_f[1:] + val_f[:-1])/2 + file_f.pressfc.values # add surface pressure to get full pressure for each level
vals_f.append(val_f)
for var in sfc_vars:
vals_f.append(file[var].values) # shape(1,32,64) # collect all variables in sfc_vars
vals_f.append(lons_m[None,]) #21 # raw lon
vals_f.append(lats_m[None,]) #22 # raw lat
vals_f.append(lons_sin[None,]) #23 # sine of lon
vals_f.append(lons_cos[None,]) #24 # cosine of lon
vals_f.append(np.ones((1,nlat,nlon))*date_in[index_d][:,None,None]) # time information
f06[index_d] = (np.concatenate(vals_f, axis=0) - f06_sub_mean[:,None,None])/f06_sub_std[:,None,None] # stack up all variables for each date
inc[index_d] = (np.concatenate(vals_i, axis=0) - inc_sub_mean[:,None,None])/inc_sub_std[:,None,None] # stack up all variables for each date
Parallel(n_jobs=40,verbose=0)(delayed(write)(i,d) for i,d in enumerate(dates)) # run write in threadded parallel
# write(0,dates[0])
# for i,d in enumerate(dates):write(i,d)
######################################################################################
preprocess() # run the main program