From 8822c40b1663dac0a49e77e5464ea22f2aef286b Mon Sep 17 00:00:00 2001 From: Cunliang Geng Date: Mon, 4 Dec 2023 15:25:06 +0100 Subject: [PATCH] remove unused `mgf.py` and its test file --- src/nplinker/parsers/mgf.py | 568 ------------------------------------ tests/parsers/__init__.py | 0 tests/parsers/test_mgf.py | 11 - 3 files changed, 579 deletions(-) delete mode 100644 src/nplinker/parsers/mgf.py delete mode 100644 tests/parsers/__init__.py delete mode 100644 tests/parsers/test_mgf.py diff --git a/src/nplinker/parsers/mgf.py b/src/nplinker/parsers/mgf.py deleted file mode 100644 index c4a2b84e..00000000 --- a/src/nplinker/parsers/mgf.py +++ /dev/null @@ -1,568 +0,0 @@ -# Copyright 2021 The NPLinker Authors -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# coding=utf8 - -import os - - -PROTON_MASS = 1.00727645199076 - - -class MS1: - def __init__( - self, id, mz, rt, intensity, file_name, scan_number=None, single_charge_precursor_mass=None - ): - self.id = id - self.mz = mz - self.rt = rt - self.intensity = intensity - self.file_name = file_name - self.scan_number = scan_number - if single_charge_precursor_mass: - self.single_charge_precursor_mass = single_charge_precursor_mass - else: - self.single_charge_precursor_mass = self.mz - self.name = f"{self.mz}_{self.rt}" - - def __str__(self): - return "MS1(name={}, mz={}, id={}, rt={})".format(self.name, self.mz, self.rt, self.id) - - -# Abstract loader class -# *load_spectra* functions are too long, refactor and split when having time -class Loader: - def __init__( - self, - min_ms1_intensity=0.0, - peaklist=None, - isolation_window=0.5, - mz_tol=5, - rt_tol=5.0, - duplicate_filter_mz_tol=0.5, - duplicate_filter_rt_tol=16, - duplicate_filter=False, - repeated_precursor_match=None, - min_ms1_rt=0.0, - max_ms1_rt=1e6, - min_ms2_intensity=0.0, - has_scan_id=False, - rt_units="seconds", - mz_col_name="mz", - rt_col_name="rt", - csv_id_col=None, - id_field=None, - name_field=None, - ): - self.min_ms1_intensity = min_ms1_intensity - self.peaklist = peaklist - self.isolation_window = isolation_window - self.mz_tol = mz_tol - self.rt_tol = rt_tol - self.duplicate_filter = duplicate_filter - self.duplicate_filter_mz_tol = duplicate_filter_mz_tol - self.duplicate_filter_rt_tol = duplicate_filter_rt_tol - self.min_ms1_rt = min_ms1_rt - self.max_ms1_rt = max_ms1_rt - self.min_ms2_intensity = min_ms2_intensity - if repeated_precursor_match: - self.repeated_precursor_match = repeated_precursor_match - else: - self.repeated_precursor_match = 2 * self.isolation_window - - self.mz_col_name = mz_col_name - self.rt_col_name = rt_col_name - self.csv_id_col = csv_id_col - self.rt_units = rt_units - self.csv_id_col = csv_id_col - self.id_field = id_field - - self.name_field = name_field # only works for msp - fix for metlin people - - if not self.mz_col_name: - self.mz_col_name = "mz" - - def __str__(self): - return self.__class__.__name__ - - def load_spectra(self, input_set): - raise NotImplementedError("load spectra method must be implemented") - - def _ion_masses(self, precursormass, int_charge): - """Compute the parent masses. Single charge version is used for - loss computation. - """ - mul = abs(int_charge) - parent_mass = precursormass * mul - parent_mass -= int_charge * PROTON_MASS - single_charge_precursor_mass = precursormass * mul - if int_charge > 0: - single_charge_precursor_mass -= (int_charge - 1) * PROTON_MASS - elif int_charge < 0: - single_charge_precursor_mass += (mul - 1) * PROTON_MASS - else: - # charge = zero - leave them all the same - parent_mass = precursormass - single_charge_precursor_mass = precursormass - return parent_mass, single_charge_precursor_mass - - def _interpret_charge(self, charge): - """Method to interpret the ever variable charge field in the different - formats. Should never fail now. - """ - if not charge: # if it is none - return 1 - try: - if not type(charge) == str: - charge = str(charge) - - # add the meat here - # try removing any + signs - charge = charge.replace("+", "") - - # remove trailing minus signs - if charge.endswith("-"): - charge = charge[:-1] - # move the minus to the front if it - # isn't already there - if not charge.startswith("-"): - charge = "-" + charge - # turn into an int - int_charge = int(charge) - return int_charge - except: - int_charge = 1 - return int_charge - - def _load_peak_list(self): - """Modify peaklist function. Try to detect "featureid", store it in ms1_peaks - used for mgf ms1 analysis. - ms1_peaks: [featid, mz, rt, intensity], featid will be None if "FeatureId" - does not exist. - """ - self.ms1_peaks = [] - self.user_cols_names = [] - with open(self.peaklist) as f: - heads = f.readline() - - # add this in case peaklist file is separated by ';' - self.separator = "," - if ";" in heads: - self.separator = ";" - - tokens = heads.strip().split(self.separator) - index = -1 - featid_index = None - for i in range(len(tokens)): - if tokens[i].lower() == self.mz_col_name.lower(): - index = i - elif self.csv_id_col and tokens[i].lower() == self.csv_id_col.lower(): - featid_index = i - # if tokens[i].lower() == "scans": - # featid_index = i - if tokens[i].lower() in ["mass", "mz"]: # backwards compatibility - index = i - # break - self.user_cols_names.append(tokens[i]) - - # if any sample names missing, use "Sample_*" to replace - empty_sample_name_id = 0 - for i in range(index + 2, len(tokens)): - if not tokens[i]: - tokens[i] = "Sample_" + str(empty_sample_name_id) - empty_sample_name_id += 1 - - self.sample_names = tokens[index + 2 :] - - for line in f: - tokens_tuple = line.strip().split(self.separator, index + 2) - featid = None - if featid_index is not None: - featid = tokens_tuple[featid_index] - mz = tokens_tuple[index] - rt = float(tokens_tuple[index + 1]) - if self.rt_units == "minutes": - rt *= 60.0 - samples = tokens_tuple[index + 2] - # store (featid, mz,rt,intensity) - - # record user defined index columns before "mass" column in peaklist file - try: - self.ms1_peaks.append( - (featid, float(mz), float(rt), samples, tokens_tuple[:index]) - ) - except: - print("Failed on line: ") - print(line) - - # sort them by mass - self.ms1_peaks = sorted(self.ms1_peaks, key=lambda x: x[1]) - print("Loaded {} ms1 peaks from {}".format(len(self.ms1_peaks), self.peaklist)) - - def process_peaklist(self, ms1, ms2, metadata): - """Read in peaklist .csv file. - ("..., mass, RT, samplename_1, samplename_2, ..."), delimiter: '. - Find the most suitable ms1 hit, then update ms1, ms2 metadata. - """ - self._load_peak_list() - ms1 = sorted(ms1, key=lambda x: x.mz) - new_ms1_list = [] - new_ms2_list = [] - new_metadata = {} - # ms1_mz = [x.mz for z in ms1] - n_peaks_checked = 0 - - # generate a dict (featid_ms1_dict)to store featid: ms1 pair - # O(N) complexisity - # build a dict (doc_ms1)for doc_name: ms1 pair first - doc_ms1, featid_ms1_dict = {}, {} - for el in ms1: - doc_name = el.name - doc_ms1[doc_name] = el - - for k, v in metadata.items(): - if self.id_field and (self.id_field.lower() in v): - featid = v[self.id_field.lower()] - featid_ms1_dict[featid] = doc_ms1[k] - - # build ms1_ms2 dict, to make searching O(1) in the following loop - # key: ms1 object - # value: list of ms2 - ms1_ms2_dict = {} - for el in ms2: - ms1_ms2_dict.setdefault(el[3], []) - ms1_ms2_dict[el[3]].append(el) - - if self.id_field and self.csv_id_col: # if the IDs are provided, we match by that - print("IDs provided ({},{}), using them to match") - match_by_id = True - else: - print("IDs not provided, matching on m/z, rt") - match_by_id = False - - print("Matching peaks...") - for n_peaks_checked, peak in enumerate(self.ms1_peaks): - if n_peaks_checked % 500 == 0: - print(n_peaks_checked) - featid = peak[0] - peak_mz = peak[1] - peak_rt = peak[2] - peak_intensity = None if self.separator in peak[3] else float(peak[3]) - user_cols = peak[4] - - # first check FeatureId matching - # if featureId not exist, then do "mz/rt matching" - old_ms1 = None - - if match_by_id: - if featid is not None and featid in featid_ms1_dict: - old_ms1 = featid_ms1_dict[featid] - else: - min_mz = peak_mz - self.mz_tol * peak_mz / 1e6 - max_mz = peak_mz + self.mz_tol * peak_mz / 1e6 - min_rt = peak_rt - self.rt_tol - max_rt = peak_rt + self.rt_tol - - ms1_hits = filter( - lambda x: x.mz >= min_mz - and x.mz <= max_mz - and x.rt >= min_rt - and x.rt <= max_rt, - ms1, - ) - - if len(ms1_hits) == 1: - # Found one hit, easy - old_ms1 = ms1_hits[0] - elif len(ms1_hits) > 1: - # Find the one with the most intense MS2 peak - best_ms1 = None - best_intensity = 0.0 - for frag_peak in ms2: - if frag_peak[3] in ms1_hits: - if frag_peak[2] > best_intensity: - best_intensity = frag_peak[2] - best_ms1 = frag_peak[3] - old_ms1 = best_ms1 - - # Bug fix: - # add these two lines to avoid the case that min_ms2_intensity has been set too high, - # then most fragments will be removed, and we cannot find a hit for ms1, which will lead to bug: - # AttributeError: 'NoneType' object has no attribute 'id' - if not old_ms1: - continue - - # make a new ms1 object - new_ms1 = MS1( - old_ms1.id, peak_mz, peak_rt, peak_intensity, old_ms1.file_name, old_ms1.scan_number - ) - new_ms1.name = old_ms1.name - new_ms1_list.append(new_ms1) - new_metadata[new_ms1.name] = metadata[old_ms1.name] - - # record user index columns before "mass" column in peaklist file into metadata - new_metadata[new_ms1.name]["user_cols"] = zip(self.user_cols_names, user_cols) - - if self.separator in peak[3]: - # print "process sample", str(peak[0]), str(peak[1]) - tokens = [] - for token in peak[3].split(self.separator): - try: - token = float(token) - except: - token = None - if token <= 0: - token = None - tokens.append(token) - # tokens = [float(token) for token in peak[2].split(self.separator)] - new_metadata[new_ms1.name]["intensities"] = dict(zip(self.sample_names, tokens)) - - # Delete the old one so it can't be picked again - removed this, maybe it's not a good idea? - # pos = ms1.index(old_ms1) - # del ms1[pos] - - # Change the reference in the ms2 objects to the new ms1 object - - # Use a dictionary outside the loop to replace the following method, O(N^2) => O(N) - # ms2_objects = filter(lambda x: x[3] == old_ms1,ms2) - ms2_objects = [] - if old_ms1 in ms1_ms2_dict: - ms2_objects = ms1_ms2_dict[old_ms1] - - for frag_peak in ms2_objects: - new_frag_peak = ( - frag_peak[0], - peak_rt, - frag_peak[2], - new_ms1, - frag_peak[4], - frag_peak[5], - ) - new_ms2_list.append(new_frag_peak) - - # replace the ms1,ms2 and metadata with the new versions - ms1 = new_ms1_list - ms2 = new_ms2_list - metadata = new_metadata - print(f"Peaklist filtering results in {len(ms1)} documents") - return ms1, ms2, metadata - - def filter_ms1_intensity(self, ms1, ms2, min_ms1_intensity=1e6): - # Use filter function to simplify code - print("Filtering MS1 on intensity") - # Sometimes ms1 intensity could be None - ms1 = filter( - lambda x: False if x.intensity and x.intensity < min_ms1_intensity else True, ms1 - ) - print(f"{len(ms1)} MS1 remaining") - ms2 = filter(lambda x: x[3] in set(ms1), ms2) - print(f"{len(ms2)} MS2 remaining") - return ms1, ms2 - - def filter_ms2_intensity(self, ms2, min_ms2_intensity=1e6): - print("Filtering MS2 on intensity") - ms2 = filter(lambda x: x[2] >= min_ms2_intensity, ms2) - print(f"{len(ms2)} MS2 remaining") - return ms2 - - def filter_ms1(self, ms1, ms2, mz_tol=0.5, rt_tol=16): - print("Filtering MS1 to remove duplicates") - # Filters the loaded ms1s to reduce the number of times that the same molecule has been fragmented - - # Sort the remaining ones by intensity - ms1_by_intensity = sorted(ms1, key=lambda x: x.intensity, reverse=True) - - final_ms1_list = [] - final_ms2_list = [] - while True: - if len(ms1_by_intensity) == 0: - break - # Take the highest intensity one, find things within the window and remove them - current_ms1 = ms1_by_intensity[0] - final_ms1_list.append(current_ms1) - del ms1_by_intensity[0] - - current_mz = current_ms1.mz - mz_err = mz_tol * 1.0 * current_mz / (1.0 * 1e6) - min_mz = current_mz - mz_err - max_mz = current_mz + mz_err - - min_rt = current_ms1.rt - rt_tol - max_rt = current_ms1.rt + rt_tol - - # find things inside this region - hits = filter( - lambda x: x.mz > min_mz and x.mz < max_mz and x.rt > min_rt and x.rt < max_rt, - ms1_by_intensity, - ) - for hit in hits: - pos = ms1_by_intensity.index(hit) - del ms1_by_intensity[pos] - - print(f"{len(final_ms1_list)} MS1 remaining") - for m in ms2: - if m[3] in final_ms1_list: - final_ms2_list.append(m) - - print(f"{len(final_ms2_list)} MS2 remaining") - return final_ms1_list, final_ms2_list - - def process_metadata(self, ms1, metadata): - filtered_metadata = {} - for m in ms1: - if m.name in metadata: - filtered_metadata[m.name] = metadata[m.name] - metadata = filtered_metadata - - return metadata - - -# A class to load spectra that sit in MGF files -class LoadMGF(Loader): - def load_spectra(self, input_set): - ms1 = [] - ms2 = [] - metadata = {} - ms2_id = 0 - ms1_id = 0 - for input_file in input_set: - # Use built-in method to get file_name - file_name = os.path.basename(input_file) - with open(input_file) as f: - temp_metadata = {} - in_doc = False - parentmass = None - parentintensity = None - parentrt = None - for line in f: - rline = line.rstrip() - if not rline or rline == "BEGIN IONS": - continue - if rline == "END IONS": - # finished doc, time to save - in_doc = False - temp_metadata = {} - parentmass = None - parentintensity = None - parentrt = None - new_ms1 = None - else: - if "=" in rline: - key, val = rline.split("=", 1) - key = key.lower() - - if len(val) == 0: - continue - - featid = None - if key in ["featureid", "feature_id"]: - featid = val - temp_metadata["featid"] = val - - elif key == "rtinseconds": - # val = float(val) if isinstance(val, float) else None - try: - val = float(val) - except: - val = None - temp_metadata["parentrt"] = val - parentrt = val - - elif key == "pepmass": - # only mass exists - if " " not in val: - temp_metadata["precursormass"] = float(val) - temp_metadata["parentintensity"] = None - parentmass = float(val) - parentintensity = None - - # mass and intensity exist - else: - parentmass, parentintensity = val.split(" ", 1) - parentmass = float(parentmass) - parentintensity = float(parentintensity) - temp_metadata["precursormass"] = parentmass - temp_metadata["parentintensity"] = parentintensity - - else: - temp_metadata[key] = val - else: - if "mslevel" in temp_metadata and temp_metadata["mslevel"] == "1": - continue - - if not in_doc: - in_doc = True - # Following corrects parentmass according to charge - # if charge is known. This should lead to better computation of neutral losses - single_charge_precursor_mass = temp_metadata["precursormass"] - precursor_mass = temp_metadata["precursormass"] - parent_mass = temp_metadata["precursormass"] - - str_charge = temp_metadata.get("charge", "1") - int_charge = self._interpret_charge(str_charge) - - parent_mass, single_charge_precursor_mass = self._ion_masses( - precursor_mass, int_charge - ) - - temp_metadata["parentmass"] = parent_mass - temp_metadata[ - "singlechargeprecursormass" - ] = single_charge_precursor_mass - temp_metadata["charge"] = int_charge - - new_ms1 = MS1( - ms1_id, - precursor_mass, - parentrt, - parentintensity, - file_name, - single_charge_precursor_mass=single_charge_precursor_mass, - ) - ms1_id += 1 - - doc_name = temp_metadata.get(self.name_field.lower(), None) - if not doc_name: - if "name" in temp_metadata: - doc_name = temp_metadata["name"] - else: - doc_name = f"document_{ms1_id}" - metadata[doc_name] = temp_metadata.copy() - # TODO this overrides the original format of MS1.name attribute? - new_ms1.name = doc_name - ms1.append(new_ms1) - - tokens = rline.split() - if len(tokens) == 2: - mz = float(tokens[0]) - intensity = float(tokens[1]) - if intensity != 0.0: - ms2.append( - (mz, 0.0, intensity, new_ms1, file_name, float(ms2_id)) - ) - ms2_id += 1 - - # add ms1, ms2 intensity filtering for msp input - if self.min_ms1_intensity > 0.0: - ms1, ms2 = self.filter_ms1_intensity(ms1, ms2, min_ms1_intensity=self.min_ms1_intensity) - if self.min_ms2_intensity > 0.0: - ms2 = self.filter_ms2_intensity(ms2, min_ms2_intensity=self.min_ms2_intensity) - - if self.peaklist: - ms1, ms2, metadata = self.process_peaklist(ms1, ms2, metadata) - - # Chop out filtered docs from metadata - metadata = self.process_metadata(ms1, metadata) - - return ms1, ms2, metadata diff --git a/tests/parsers/__init__.py b/tests/parsers/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/tests/parsers/test_mgf.py b/tests/parsers/test_mgf.py deleted file mode 100644 index 4ed0d929..00000000 --- a/tests/parsers/test_mgf.py +++ /dev/null @@ -1,11 +0,0 @@ -from nplinker.parsers.mgf import LoadMGF -from .. import GNPS_DATA_DIR - - -def test_load_mgf(): - loader = LoadMGF(name_field="scans") - ms1, ms2, metadata = loader.load_spectra([GNPS_DATA_DIR / "spectra.mgf"]) - - assert ms1 is not None - assert ms2 is not None - assert metadata is not None