-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathswda.py
462 lines (423 loc) · 17.9 KB
/
swda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#!/usr/bin/env python
"""
Classes for dealing with the CSV version of the Switchboard Dialog Act
corpus that was distributed as part of this course:
http://compprag.christopherpotts.net/. That CSV version pools the
Dialog Act Corpus, the corresponding Penn Treebank 3 trees, and the
metadata tables from the original Switchboard 2 release.
The main classes are `CorpusReader`, `Transcript`, and `Utterance`. The
`CorpusReader` works with the entire corpus, providing iterator methods
for moving through all of the `Transcript` or `Utterance` instances in it.
"""
__author__ = "Christopher Potts"
__version__ = "2.0"
__license__ = "GNU general public license, version 2"
__maintainer__ = "Christopher Potts"
__email__ = "See the author's website"
######################################################################
import csv
import datetime
import os
import re
import sys
import glob
from nltk.tree import Tree
from nltk.stem import WordNetLemmatizer
######################################################################
class Metadata:
"""
Basically an internal method for organizing the tables of metadata
from the original Switchboard transcripts and linking them with
the dialog acts.
"""
def __init__(self, metadata_filename):
"""
Turns the CSV file into a dictionary mapping Switchboard
conversation_no integers values to dictionaries of values. All
the keys correspond to the column names in the original
tables.
Parameters
----------
metadata_filename : str
The CSV file swda-metadata.csv (should be in the main
folder of the swda directory).
"""
self.metadata_filename = metadata_filename
self.metadata = {}
self.get_metadata()
def get_metadata(self):
"""
Build the dictionary self.metadata mapping conversation_no to
dictionaries of values (str, int, or datatime, as
appropriate).
"""
csvreader = csv.reader(open(self.metadata_filename))
header = next(csvreader)
for row in csvreader:
d = dict(list(zip(header, row)))
for key in ('conversation_no', 'length',
'from_caller_education', 'to_caller_education'):
d[key] = int(d[key])
talk_day = d['talk_day']
talk_year = int('19' + talk_day[:2])
talk_month = int(talk_day[2:4])
talk_day = int(talk_day[4:])
d['talk_day'] = datetime.datetime(
year=talk_year, month=talk_month, day=talk_day)
d['from_caller_birth_year'] = int(d['from_caller_birth_year'])
d['to_caller_birth_year'] = int(d['to_caller_birth_year'])
self.metadata[d['conversation_no']] = d
def __getitem__(self, val):
"""
Val should be a key in self.metadata; returns the
corresponding value.
"""
return self.metadata[val]
######################################################################
class CorpusReader:
"""Class for reading in the corpus and iterating through its values."""
def __init__(self, src_dirname):
"""
Reads in the data from `src_dirname` (should be the root of the
corpus). Assumes that the metadata file `swda-metadata.csv` is
in the main directory of the corpus, using that file to build
the `Metadata` object used throughout.
"""
self.src_dirname = src_dirname
metadata_filename = os.path.join(src_dirname, 'swda-metadata.csv')
self.metadata = Metadata(metadata_filename)
def iter_transcripts(self, display_progress=True):
"""
Iterate through the transcripts.
Parameters
----------
display_progress : bool (default: True)
Display an overwriting progress bar if True.
"""
i = 1
for filename in glob.glob(os.path.join(self.src_dirname, "sw*", "*.csv")):
# Optional progress bar:
if display_progress:
sys.stderr.write("\r")
sys.stderr.write("transcript %s" % i)
sys.stderr.flush();
i += 1
# Yield the Transcript instance:
yield Transcript(filename, self.metadata)
# Closing blank line for the progress bar:
if display_progress: sys.stderr.write("\n")
def iter_utterances(self, display_progress=True):
"""
Iterate through the utterances.
Parameters
----------
display_progress : bool (default: True)
Display an overwriting progress bar if True.
"""
i = 1
for trans in self.iter_transcripts(display_progress=False):
for utt in trans.utterances:
# Optional progress bar.
if display_progress:
sys.stderr.write("\r")
sys.stderr.write("utterance %s" % i)
sys.stderr.flush();
i += 1
# Yield the Utterance instance:
yield utt
# Closing blank line for the progress bar:
if display_progress: sys.stderr.write("\n")
######################################################################
class Transcript:
"""
Transcript instances are basically just containers for lists of
utterances and transcript-level metadata, accessible via
attributes.
"""
def __init__(self, swda_filename, metadata):
"""
Sets up all the attribute values:
Parameters
----------
swda_filename : str
The filename for this transcript.
metadata : str or Metadata
If a string, then assumed to be the metadata fileame, and
the metadata is created from that filename. If a `Metadata`
object, then used as the needed metadata directly.
"""
self.swda_filename = swda_filename
# If the supplied value is a filename:
if isinstance(metadata, str) or isinstance(metadata, str):
self.metadata = Metadata(metadata)
else: # Where the supplied value is already a Metadata object.
self.metadata = metadata
# Get the file rows:
rows = list(csv.reader(open(self.swda_filename, 'rt')))
# Ge the header and remove it from the rows:
self.header = rows[0]
rows.pop(0)
# Extract the conversation_no to get the meta-data. Use the
# header for this in case the column ordering is ever changed:
row0dict = dict(list(zip(self.header, rows[1])))
self.conversation_no = int(row0dict['conversation_no'])
# The ptd filename in the right format for the current OS:
self.ptd_basename = os.sep.join(row0dict['ptb_basename'].split("/"))
# The dictionary of metadata for this transcript:
transcript_metadata = self.metadata[self.conversation_no]
for key, val in transcript_metadata.items():
setattr(self, key, transcript_metadata[key])
# Create the utterance list:
self.utterances = [Utterance(x, transcript_metadata) for x in rows]
# Coder's Manual: ``We also removed any line with a "@"
# (since @ marked slash-units with bad segmentation).''
self.utterances = [u for u in self.utterances if not re.search(r"[@]", u.act_tag)]
######################################################################
class Utterance:
"""
The central object of interest. The attributes correspond to the
values of the class variable header:
'swda_filename': (str) The filename: directory/basename
'ptb_basename': (str) The Treebank filename: add ".pos" for POS and ".mrg" for trees
'conversation_no': (int) The conversation Id, to key into the metadata database.
'transcript_index': (int) The line number of this item in the transcript (counting only utt lines).
'act_tag': (list of str) The Dialog Act Tags (separated by ||| in the file).
'caller': (str) A, B, @A, @B, @@A, @@B
'utterance_index': (int) The encoded index of the utterance (the number in A.49, B.27, etc.)
'subutterance_index': (int) Utterances can be broken across line. This gives the internal position.
'text': (str) The text of the utterance
'pos': (str) The POS tagged version of the utterance, from PtbBasename+.pos
'trees': (list of nltk.tree.Tree) The tree(s) containing this utterance (separated by ||| in the file).
'ptb_treenumbers': (list of int) The tree numbers in the PtbBasename+.mrg
"""
header = [
'swda_filename',
'ptb_basename',
'conversation_no',
'transcript_index',
'act_tag',
'caller',
'utterance_index',
'subutterance_index',
'text',
'pos',
'trees',
'ptb_treenumbers']
def __init__(self, row, transcript_metadata):
"""
Parameters
----------
row : list
A row from one of the corpus CSV files.
transcript_metadata : dict
A Metadata value based on the current `conversation_no`.
"""
##################################################
# Utterance data:
for i in range(len(Utterance.header)):
att_name = Utterance.header[i]
row_value = None
if i < len(row):
row_value = row[i].strip()
# Special handling of non-string values.
if att_name == "trees":
if row_value:
row_value = [Tree.fromstring(t)
for t in row_value.split("|||")]
else:
row_value = []
elif att_name == "ptb_treenumbers":
if row_value:
row_value = list(map(int, row_value.split("|||")))
else:
row_value = []
elif att_name == 'act_tag':
# I thought these conjoined tags were meant to be split.
# The docs suggest that they are single tags, thought,
# so skip this conditional and let it be treated as a str.
# row_value = re.split(r"\s*[,;]\s*", row_value)
# `` Transcription errors (typos, obvious mistranscriptions) are
# marked with a "*" after the discourse tag.''
# These are removed for this version.
row_value = row_value.replace("*", "")
elif att_name in ('conversation_no', 'transcript_index',
'utterance_index', 'subutterance_index'):
row_value = int(row_value)
# Add the attribute.
setattr(self, att_name, row_value)
##################################################
# Caller data:
for key in ('caller_sex', 'caller_education',
'caller_birth_year', 'caller_dialect_area'):
full_key = 'from_' + key
if self.caller.endswith("B"):
full_key = 'to_' + key
setattr(self, key, transcript_metadata[full_key])
def damsl_act_tag(self):
"""
Seeks to duplicate the tag simplification described at the
Coders' Manual: http://www.stanford.edu/~jurafsky/ws97/manual.august1.html
"""
d_tags = []
tags = re.split(r"\s*[,;]\s*", self.act_tag)
for tag in tags:
if tag in ('qy^d', 'qw^d', 'b^m'):
pass
elif tag == 'nn^e':
tag = 'ng'
elif tag == 'ny^e':
tag = 'na'
else:
tag = re.sub(r'(.)\^.*', r'\1', tag)
tag = re.sub(r'[\(\)@*]', '', tag)
if tag in ('qr', 'qy'):
tag = 'qy'
elif tag in ('fe', 'ba'):
tag = 'ba'
elif tag in ('oo', 'co', 'cc'):
tag = 'oo_co_cc'
elif tag in ('fx', 'sv'):
tag = 'sv'
elif tag in ('aap', 'am'):
tag = 'aap_am'
elif tag in ('arp', 'nd'):
tag = 'arp_nd'
elif tag in ('fo', 'o', 'fw', '"', 'by', 'bc'):
tag = 'fo_o_fw_"_by_bc'
d_tags.append(tag)
# Dan J says (p.c.) that it makes sense to take the first;
# there are only a handful of examples with 2 tags here.
return d_tags[0]
def tree_is_perfect_match(self):
"""
Returns True if self.trees is a singleton that perfectly matches
the words in the utterances (with certain simplifactions to each
to accommodate different notation and information).
"""
if len(self.trees) != 1:
return False
tree_lems = self.regularize_tree_lemmas()
pos_lems = self.regularize_pos_lemmas()
if pos_lems == tree_lems:
return True
else:
return False
def regularize_tree_lemmas(self):
"""
Simplify the (word, pos) tags asssociated with the lemmas for
this utterances trees, so that they can be compared with those
of self.pos. The output is a list of (string, pos) pairs.
"""
tree_lems = self.tree_lemmas()
tree_lems = [x for x in tree_lems if x[1] not in {'-NONE-', '-DFL-'}]
tree_lems = [(re.sub(r"-$", "", x[0]), x[1]) for x in tree_lems]
return tree_lems
def regularize_pos_lemmas(self):
"""
Simplify the (word, pos) tags asssociated with self.pos, so
that they can be compared with those of the trees. The output
is a list of (string, pos) pairs.
"""
pos_lems = self.pos_lemmas()
pos_lems = [x for x in pos_lems if x and len(x) == 2]
nontree_nodes = ('^PRP^BES', '^FW', '^MD', '^MD^RB', '^PRP^VBZ',
'^WP$', '^NN^HVS', 'NN|VBG', '^DT^BES', '^MD^VB',
'^DT^JJ', '^PRP^HVS', '^NN^POS', '^WP^BES', '^NN^BES',
'NN|CD', '^WDT', '^VB^PRP')
pos_lems = [x for x in pos_lems if x[1] not in nontree_nodes]
pos_lems = [x for x in pos_lems if x[0] != "--"]
pos_lems = [(re.sub(r"-$", "", x[0]), x[1]) for x in pos_lems]
return pos_lems
def text_words(self, filter_disfluency=False):
"""
Tokenized version of the utterance; filter_disfluency=True
will remove the special utterance notation to make the results
look more like printed text. The tokenization itself is just
spitting on whitespace, with no other simplification. The
return value is a list of str instances.
"""
t = self.text
if filter_disfluency:
t = re.sub(r"([+/\}\[\]]|\{\w)", "", t)
return re.split(r"\s+", t.strip())
def pos_words(self, wn_lemmatize=False):
"""
Return the words associated with self.pos. wn_lemmatize=True
runs the WordNet stemmer on the words before removing their
tags.
"""
lemmas = self.pos_lemmas(wn_lemmatize=wn_lemmatize)
return [x[0] for x in lemmas]
def tree_words(self, wn_lemmatize=False):
"""
Return the words associated with self.trees
terminals. wn_lemmatize=True runs the WordNet stemmer on the
words before removing their tags.
"""
lemmas = self.tree_lemmas(wn_lemmatize=wn_lemmatize)
return [x[0] for x in lemmas]
def pos_lemmas(self, wn_format=False, wn_lemmatize=False):
"""
Return the (string, pos) pairs associated with
self.pos. wn_lemmatize=True runs the WordNet stemmer on the
words before removing their tags. wn_format merely changes the
tags to wn_format where possible.
"""
pos = self.pos
pos = pos.strip()
word_tag = list(map((lambda x: tuple(x.split("/"))), re.split(r"\s+", pos)))
word_tag = [x for x in word_tag if len(x) == 2]
word_tag = self.wn_lemmatizer(
word_tag, wn_format=wn_format, wn_lemmatize=wn_lemmatize)
return word_tag
def tree_lemmas(self, wn_format=False, wn_lemmatize=False):
"""
Return the (string, pos) pairs associated with self.trees
terminals. wn_lemmatize=True runs the WordNet stemmer on the
words before removing their tags. wn_format merely changes the
tags to wn_format where possible.
"""
word_tag = []
for tree in self.trees:
word_tag += tree.pos()
return self.wn_lemmatizer(
word_tag, wn_format=wn_format, wn_lemmatize=wn_lemmatize)
def wn_lemmatizer(self, word_tag, wn_format=False, wn_lemmatize=False):
# Lemmatizing implies converting to WordNet tags.
if wn_lemmatize:
word_tag = list(map(self.__treebank2wn_pos, word_tag))
word_tag = list(map(self.__wn_lemmatize, word_tag))
# This is tag conversion without lemmatizing.
elif wn_format:
word_tag = list(map(self.__treebank2wn_pos, word_tag))
return word_tag
def __treebank2wn_pos(self, lemma):
"""
Internal method for turning a lemma's pos value into one that
is compatible with WordNet, where possible (else the tag is
left alone).
"""
string, tag = lemma
tag = tag.lower()
if tag.startswith('v'):
tag = 'v'
elif tag.startswith('n'):
tag = 'n'
elif tag.startswith('j'):
tag = 'a'
elif tag.startswith('rb'):
tag = 'r'
return (string, tag)
def __wn_lemmatize(self, lemma):
"""
Lemmatize lemma using wordnet.stemWordNetLemmatizer(). Always
returns a (string, pos) pair. Lemmatizes even when the tag
isn't helpful, by ignoring it for stemming.
"""
string, tag = lemma
wnl = WordNetLemmatizer()
if tag in ('a', 'n', 'r', 'v'):
string = wnl.lemmatize(string, tag)
else:
string = wnl.lemmatize(string)
return (string, tag)