-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
470 lines (390 loc) · 19.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import argparse
import os
import pickle
import random
import shutil
import sys
import time
from collections import OrderedDict
import csv
import numpy as np
import glob
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import yaml
from tqdm import tqdm
from utils.loss import get_loss_func
def init_seed(seed):
torch.cuda.manual_seed_all(seed)
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# torch.backends.cudnn.enabled = False
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def import_class(name):
components = name.split('.')
mod = __import__(components[0]) # import return model
for comp in components[1:]:
mod = getattr(mod, comp)
return mod
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
def get_parser():
# parameter priority: command line > config > default
parser = argparse.ArgumentParser(description='Skeleton-based Action Recgnition')
parser.add_argument('--seed', type=int, default=1, help='seed')
parser.add_argument('--work_dir', default='./work_dir/ntu/temp', help='the work folder for storing results')
parser.add_argument('--config', default='./config/ntu/ntu26_xsub_joint.yaml', help='path to the configuration file')
# processor
parser.add_argument('--run_mode', default='train', help='must be train or test')
parser.add_argument('--save_score', type=str2bool, default=False, help='if ture, the classification score will be stored')
# visulize and debug
parser.add_argument('--save_epoch', type=int, default=80, help='the start epoch to save model (#iteration)')
parser.add_argument('--eval_interval', type=int, default=2, help='the interval for evaluating models (#iteration)')
parser.add_argument('--print_log', type=str2bool, default=True, help='print logging or not')
parser.add_argument('--show_topk', type=int, default=[1, 5], nargs='+', help='which Top K accuracy will be shown')
# feeder
parser.add_argument('--feeder', default='feeders.feeder_ntu.Feeder', help='data loader will be used')
parser.add_argument('--num_worker', type=int, default=8, help='the number of worker for data loader')
parser.add_argument('--train_feeder_args', default=dict(), help='the arguments of data loader for training')
parser.add_argument('--test_feeder_args', default=dict(), help='the arguments of data loader for test')
# model
parser.add_argument('--model', default=None, help='the model will be used')
parser.add_argument('--model_args', default=dict(), help='the arguments of model')
parser.add_argument('--weights', default=None, help='the weights for model testing')
parser.add_argument('--ignore_weights', type=str, default=[], nargs='+', help='the name of weights which will be ignored in the initialization')
# optim
parser.add_argument('--base_lr', type=float, default=0.1, help='initial learning rate')
parser.add_argument('--step', type=int, default=[60, 80], nargs='+', help='the epoch where optimizer reduce the learning rate')
parser.add_argument('--cuda_visible_device', default='0,1', help='')
parser.add_argument('--device', type=int, default=[0,1], nargs='+', help='the indexes of GPUs for training or testing')
parser.add_argument('--optimizer', default='SGD', help='type of optimizer')
parser.add_argument('--nesterov', type=str2bool, default=False, help='use nesterov or not')
parser.add_argument('--batch_size', type=int, default=256, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=256, help='test batch size')
parser.add_argument('--start_epoch', type=int, default=0, help='start training from which epoch')
parser.add_argument('--num_epoch', type=int, default=80, help='stop training in which epoch')
parser.add_argument('--weight_decay', type=float, default=0.0005, help='weight decay for optimizer')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--warm_up_epoch', type=int, default=5)
parser.add_argument('--optimizer_betas', type=float, default=[0.9, 0.999])
parser.add_argument('--loss', default='CrossEntropy', help='the loss will be used')
parser.add_argument('--loss_args', default=dict(), help='the arguments of loss')
return parser
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.value = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, n=1):
self.value = value
self.sum += value * n
self.count += n
self.avg = self.sum / self.count
class Processor():
""" Processor for Skeleton-based Action Recgnition """
def __init__(self, arg):
self.arg = arg
self.global_step = 0
self.lr = self.arg.base_lr
self.best_acc = 0
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
self.load_model()
self.load_data()
if arg.run_mode == 'train':
if not arg.train_feeder_args['debug']:
self.load_optimizer()
self.model = self.model.cuda(self.output_device)
if type(self.arg.device) is list:
if len(self.arg.device) > 1:
self.model = nn.DataParallel(self.model, device_ids=self.arg.device, output_device=self.output_device)
def load_data(self):
Feeder = import_class(self.arg.feeder)
self.data_loader = dict()
if self.arg.run_mode == 'train':
self.data_loader['train'] = DataLoader(
dataset=Feeder(**self.arg.train_feeder_args),
batch_size=self.arg.batch_size,
shuffle=True,
num_workers=self.arg.num_worker,
drop_last=True,
worker_init_fn=init_seed)
self.data_loader['test'] = DataLoader(
dataset=Feeder(**self.arg.test_feeder_args),
batch_size=self.arg.test_batch_size,
shuffle=False,
num_workers=self.arg.num_worker,
drop_last=False,
worker_init_fn=init_seed)
self.print_log('Data load finished')
def load_model(self):
output_device = self.arg.device[0] if type(self.arg.device) is list else self.arg.device
self.output_device = output_device
Model = import_class(self.arg.model)
self.model = Model(**self.arg.model_args)
self.loss = get_loss_func(self.arg.loss, self.arg.loss_args).cuda(output_device)
if self.arg.weights:
# self.global_step = int(arg.weights[:-3].split('-')[-1])
self.print_log('Load weights from {}'.format(self.arg.weights))
if '.pkl' in self.arg.weights:
with open(self.arg.weights, 'r') as f:
weights = pickle.load(f)
else:
weights = torch.load(self.arg.weights)
weights = OrderedDict([[k.split('module.')[-1], v.cuda(output_device)] for k, v in weights.items()])
keys = list(weights.keys())
for w in self.arg.ignore_weights:
for key in keys:
if w in key:
if weights.pop(key, None) is not None:
self.print_log('Sucessfully Remove Weights: {}.'.format(key))
else:
self.print_log('Can Not Remove Weights: {}.'.format(key))
try:
self.model.load_state_dict(weights)
except:
state = self.model.state_dict()
diff = list(set(state.keys()).difference(set(weights.keys())))
print('Can not find these weights:')
for d in diff:
print(' ' + d)
state.update(weights)
self.model.load_state_dict(state)
self.print_log('Model load finished: ' + self.arg.model)
def load_optimizer(self):
if self.arg.optimizer == 'SGD':
self.optimizer = optim.SGD(
self.model.parameters(),
lr=self.arg.base_lr,
momentum=0.9,
nesterov=self.arg.nesterov,
weight_decay=self.arg.weight_decay)
elif self.arg.optimizer == 'Adam':
self.optimizer = optim.Adam(
self.model.parameters(),
lr=self.arg.base_lr,
weight_decay=self.arg.weight_decay,
betas=(self.arg.optimizer_betas[0], self.arg.optimizer_betas[1]))
elif self.arg.optimizer == 'AdamW':
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=self.arg.base_lr,
weight_decay=self.arg.weight_decay,
betas=(self.arg.optimizer_betas[0], self.arg.optimizer_betas[1]))
else:
raise ValueError()
self.print_log('Optimizer load finished: ' + self.arg.optimizer)
def adjust_learning_rate(self, epoch):
self.print_log('adjust learning rate, using warm up, epoch: {}'.format(self.arg.warm_up_epoch))
if self.arg.optimizer == 'SGD' or self.arg.optimizer == 'Adam' or self.arg.optimizer == 'AdamW':
if epoch < self.arg.warm_up_epoch:
lr = self.arg.base_lr * (epoch + 1) / self.arg.warm_up_epoch
else:
lr = self.arg.base_lr * ( self.arg.lr_decay_rate ** np.sum(epoch >= np.array(self.arg.step)))
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
return lr
else:
raise ValueError()
def print_log(self, str, print_time=True):
if print_time:
localtime = time.strftime('%Y-%m-%d %H:%M', time.localtime(time.time()))
str = "[ " + localtime + ' ] ' + str
print(str)
if self.arg.print_log:
with open('{}/log.txt'.format(self.arg.work_dir), 'a') as f:
print(str, file=f)
def train(self, epoch, save_model=False):
losses = AverageMeter()
top1 = AverageMeter()
self.model.train()
self.adjust_learning_rate(epoch)
for batch, (data, label, sample) in enumerate(tqdm(self.data_loader['train'], desc="Training", ncols=100)):
self.global_step += 1
with torch.no_grad():
data = data.float().cuda(self.output_device)
label = label.long().cuda(self.output_device)
# forward
output = self.model(data)
loss = self.loss(output, label)
# backward
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
prec = accuracy(output.data, label, topk=(1,))
top1.update(prec[0].item(), data.size(0))
losses.update(loss.item())
self.lr = self.optimizer.param_groups[0]['lr']
self.print_log('training: epoch: {}, loss: {:.4f}, top1: {:.2f}%, lr: {:.6f}'.format(
epoch + 1, losses.avg, top1.avg, self.lr))
def eval(self, epoch, save_score=False, loader_name=['test'], wrong_file=None, result_file=None):
losses = AverageMeter()
top1 = AverageMeter()
if wrong_file is not None:
f_w = open(wrong_file, 'w')
if result_file is not None:
f_r = open(result_file, 'w')
self.model.eval()
for ln in loader_name:
score_frag = []
label_list = []
pred_list = []
for batch, (data, label, sampie) in enumerate(tqdm(self.data_loader[ln], desc="Evaluating", ncols=100)):
label_list.append(label)
with torch.no_grad():
data = data.float().cuda(self.output_device)
label = label.long().cuda(self.output_device)
output = self.model(data)
loss = self.loss(output, label)
score_frag.append(output.data.cpu().numpy())
_, predict_label = torch.max(output.data, 1)
pred_list.append(predict_label.data.cpu().numpy())
prec = accuracy(output.data, label, topk=(1,))
top1.update(prec[0].item(), data.size(0))
losses.update(loss.item())
if wrong_file is not None or result_file is not None:
predict = list(predict_label.cpu().numpy())
true = list(label.data.cpu().numpy())
for i, x in enumerate(predict):
if result_file is not None:
f_r.write(str(x) + ',' + str(true[i]) + '\n')
if x != true[i] and wrong_file is not None:
f_w.write(str(sampie[i]) + ',' + str(x) + ',' + str(true[i]) + '\n')
score = np.concatenate(score_frag)
score_dict = dict(zip(self.data_loader[ln].dataset.sample_name, score))
if top1.avg >= self.best_acc and self.arg.run_mode == 'train':
state_dict = self.model.state_dict()
weights = OrderedDict([[k.split('module.')[-1], v.cpu()] for k, v in state_dict.items()])
torch.save(weights, self.arg.work_dir + '/' + self.arg.work_dir.split('/')[-1] + '.pt')
self.best_acc = top1.avg if top1.avg > self.best_acc else self.best_acc
self.print_log('evaluating: loss: {:.4f}, top1: {:.2f}%, best_acc: {:.2f}%'.format(losses.avg, top1.avg, self.best_acc))
if save_score:
with open('{}/score.pkl'.format(self.arg.work_dir), 'wb') as f:
pickle.dump(score_dict, f)
def h2o_get_results(self, loader_name=['test'], result_file=None):
res = {"modality": "train: hand+obj, test: hand+obj", }
self.model.eval()
for ln in loader_name:
for batch, (data, index) in enumerate(tqdm(self.data_loader[ln], desc="Evaluating", ncols=100)):
with torch.no_grad():
data = data.float().cuda(self.output_device)
output = self.model(data)
_, predict_label = torch.max(output.data, 1)
pred = predict_label.data.cpu().numpy()
for i in range(len(pred)):
res[str(index[i].data.cpu().numpy()+1)] = int(pred[i] + 1)
out = open(result_file, 'w')
json.dump(res, out)
def asb_get_results(self, loader_name=['test'], result_file=None):
res = {"task": "recognition", "results": {}}
softmax = nn.Softmax(dim=1)
type_name = "default"
if self.arg.model_args['num_classes'] == 1380:
type_name = "action"
elif self.arg.model_args['num_classes'] == 24:
type_name = "verb"
elif self.arg.model_args['num_classes'] == 90:
type_name = "object"
else:
raise ValueError('Label type is not action/verb/object.')
self.model.eval()
for ln in loader_name:
for batch, (data, index) in enumerate(tqdm(self.data_loader[ln], desc="Evaluating", ncols=100)):
with torch.no_grad():
data = data.float().cuda(self.output_device)
output = self.model(data)
predict_label = softmax(output.data)
pred = predict_label.data.cpu().tolist()
for i in range(len(pred)):
res["results"][str(index[i].data.cpu().numpy())] = {type_name: pred[i]}
out = open(result_file, 'w')
json.dump(res, out)
def start(self):
if self.arg.run_mode == 'train':
for argument, value in sorted(vars(self.arg).items()):
self.print_log('{}: {}'.format(argument, value))
self.global_step = self.arg.start_epoch * len(self.data_loader['train']) / self.arg.batch_size
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
self.print_log(f'# Parameters: {count_parameters(self.model)}')
self.print_log('###***************start training***************###')
for epoch in range(self.arg.start_epoch, self.arg.num_epoch):
save_model = (epoch + 1 == self.arg.num_epoch)
self.train(epoch, save_model=save_model)
if ((epoch + 1) % self.arg.eval_interval == 0):
self.eval(epoch, save_score=self.arg.save_score, loader_name=['test'])
self.print_log('Done.\n')
elif self.arg.run_mode == 'test':
if not self.arg.test_feeder_args['debug']:
weights_path = self.arg.work_dir + '.pt'
wf = self.arg.work_dir + '/wrong.txt'
rf = self.arg.work_dir + '/right.txt'
else:
wf = rf = None
if self.arg.weights is None:
raise ValueError('Please appoint --weights.')
self.arg.print_log = False
self.print_log('Model: {}'.format(self.arg.model))
self.print_log('Weights: {}'.format(self.arg.weights))
self.eval(epoch=0, save_score=self.arg.save_score, loader_name=['test'], wrong_file=wf, result_file=rf)
self.print_log('Done.\n')
elif self.arg.run_mode == 'h2o_test_get_results':
if self.arg.weights is None:
raise ValueError('Please appoint --weights.')
self.arg.print_log = False
self.print_log('Model: {}'.format(self.arg.model))
self.print_log('Weights: {}'.format(self.arg.weights))
self.h2o_get_results(loader_name=['test'], result_file=os.path.join(self.arg.work_dir, 'action_labels.json'))
self.print_log('Done.\n')
elif self.arg.run_mode == 'asb_test_get_results':
if self.arg.weights is None:
raise ValueError('Please appoint --weights.')
self.arg.print_log = False
self.print_log('Model: {}'.format(self.arg.model))
self.print_log('Weights: {}'.format(self.arg.weights))
self.asb_get_results(loader_name=['test'], result_file=os.path.join(self.arg.work_dir, 'preds.json'))
self.print_log('Done.\n')
if __name__ == '__main__':
parser = get_parser()
# load arg form config file
p = parser.parse_args()
if p.config is not None:
with open(p.config, 'r') as f:
default_arg = yaml.load(f, yaml.FullLoader)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
assert (k in key)
parser.set_defaults(**default_arg)
arg = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = arg.cuda_visible_device
init_seed(arg.seed)
processor = Processor(arg)
processor.start()