-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathInference_binary_models.py
209 lines (141 loc) · 7.59 KB
/
Inference_binary_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
""" Authored by: Neel Kanwal (neel.kanwal0@gmail.com)"""
# This file provides inference code for binary DCNN and ViT models mentioned in the paper.
# Update paths to processed datasets
if __name__ == "__main__":
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=DeprecationWarning)
warnings.simplefilter(action='ignore', category=RuntimeWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
import matplotlib.pyplot as plt
import matplotlib
font = {'family' : 'serif',
'weight':'normal',
'size' : 36}
matplotlib.rc('font', **font)
plt.rcParams["figure.figsize"] = (20, 20)
import pandas as pd
import numpy as np
import seaborn as sns
sns.set_style("white")
import os
import torch
load_model = "cnns" # "vits", "cnns"
BATCH_SIZE = 128
evaluate_with_prob = 0.4 # Use this probablity for thresholding, set to None for not using this feature
## Threshold for CNN = 0.001
## Threshold for ViT = 0.001
# cuda_device = 3
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# torch.cuda.set_device(cuda_device)
# torch.cuda.empty_cache()
# print("Current CUDA device = ", torch.cuda.current_device())
from torch.utils.data import DataLoader
import time
import pprint
from datetime import datetime
import json
import torch, torchvision
from torchvision import datasets, models
import torchvision.transforms as transforms
from torch import nn
from utils import infer_binary_v3, load_cnn_model, load_vit_model, make_pretty_cm_v3, plot_roc_curve_v4
from sklearn.metrics import confusion_matrix, matthews_corrcoef, roc_auc_score, f1_score, accuracy_score
from scikitplot.metrics import plot_roc, plot_precision_recall
import timm
torch.manual_seed(250)
sens_thresh = 0.98 # for plot_roc curve to show probablity that gives this.
path_to_dataset = "path_to/binary_artifact_data" # Use processed datasets from zenodo link in the repository
models_location = "path_to/single_pipeline/model_weights/" # Use models from model_weights in repository
sav_dir = "path_to/preprocessing_models/"
# model weights names
binary_cnn = "cnn_binary.dat"
binary_vit = "vit_binary.dat"
test_compose = val_compose = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
t = time.time()
val_images = datasets.ImageFolder(root=path_to_dataset + "/test", transform=val_compose)
idx2class = {v: k for k, v in val_images.class_to_idx.items()}
classes_list = list(idx2class.values())
print("ID to classes ", idx2class)
num_classes = len(val_images.classes)
val_loader = DataLoader(val_images, batch_size=BATCH_SIZE, shuffle=False, num_workers=16,pin_memory=True)
test_images = datasets.ImageFolder(root=path_to_dataset + "/validation", transform=test_compose)
test_loader = DataLoader(test_images, batch_size=BATCH_SIZE, shuffle=False, num_workers=16, pin_memory=True)
print(f"Total data loading time in minutes: {(time.time() - t) / 60:.3f}")
# blur
if load_model =="cnns":
print("\nLoading Binary MobileNetv3\n")
multiclass_model = load_cnn_model(models_location, binary_cnn, num_classes=2)
else:
print("\nLoading Binary ViT\n")
multiclass_model = load_vit_model(models_location, binary_vit, num_classes=2)
if torch.cuda.is_available():
print("Cuda is available\n")
# model should be on cuda before selection of optimizer
multiclass_model = multiclass_model.cuda()
print("--------------Validation Set-------------------------")
if evaluate_with_prob is not None:
print("Using thresholding @ ", evaluate_with_prob)
y_true, y_pred, prob = infer_binary_v3(multiclass_model, val_loader)
file_names = [im[0].split("/")[-1] for im in val_loader.dataset.imgs]
data = {"files": file_names, "ground_truth": y_true, "afree_prob": prob}
dframe = pd.DataFrame(data)
print("Length of dataframe ", len(dframe))
dframe['truth_label'] = dframe['ground_truth'].apply(lambda x: 1 if x == 0 else 0)
dframe['truth_prob'] = np.round(dframe['afree_prob'], decimals=5)
with pd.ExcelWriter(f"{sav_dir}/{load_model}_predictions_binary_validation.xlsx") as wr:
dframe.to_excel(wr, index=False)
labels = ['Artifact_free', 'Artifact']
cm = make_cm(y_true, y_pred, classes_list)
print(cm)
make_pretty_cm_v3(cm, categories=labels, title=f"{load_model}_binary_validation")
plt.savefig(f"{sav_dir}/{load_model}_CM_binary_validation.png")
f1_mirco = f1_score(y_true, y_pred, average='micro')
print("\nMicro F1 Score: ", np.round(f1_mirco, decimals=4))
micro_acc = accuracy_score(y_true, y_pred)
print("\nMicro Accuracy: ", np.round(micro_acc, decimals=5))
macro_acc = accuracy_score(y_true, y_pred, normalize=True)
print("\nMacro Accuracy: ", np.round(macro_acc, decimals=4))
mcc = matthews_corrcoef(y_true, y_pred)
print("\nMCC: ", np.round(mcc, decimals=4))
tn, fp, fn, tp = cm.ravel()
recall = tp / (tp + fn) # TPR
print("\nSensitivity: ", np.round(recall, decimals=5))
spec = tn/ (tn + fp)
print("\nSpecificity of artifact-free class: ", np.round(spec, decimals=5))
plt.clf()
plot_roc_curve_v4(dframe, sensitivity_val = sens_thresh, title=f"{load_model}_ROC_binary_validation")
plt.savefig(f"{sav_dir}/{load_model}_ROC_binary_validation.png")
print("--------------Test Set-------------------------")
y_true, y_pred, prob = infer_binary_v3(multiclass_model, test_loader, use_prob_threshold = evaluate_with_prob)
file_names = [im[0].split("/")[-1] for im in test_loader.dataset.imgs]
data = {"files": file_names, "ground_truth": y_true, "afree_prob": prob}
dframe = pd.DataFrame(data)
print("Length of dataframe ", len(dframe))
dframe['truth_label'] = dframe['ground_truth'].apply(lambda x: 1 if x == 0 else 0)
dframe['truth_prob'] = np.round(dframe['afree_prob'], decimals=5)
with pd.ExcelWriter(f"{sav_dir}/{load_model}_predictions_binary_test.xlsx") as wr:
dframe.to_excel(wr, index=False)
labels = ['Artifact_free', 'Artifact']
cm = make_cm(y_true, y_pred, classes_list)
print(cm)
make_pretty_cm_v3(cm, categories=labels, title=f"{load_model}_binary_test")
plt.savefig(f"{sav_dir}/{load_model}_CM_binary_test.png")
f1_mirco = f1_score(y_true, y_pred, average='micro')
print("\nMicro F1 Score: ", np.round(f1_mirco, decimals=4))
micro_acc = accuracy_score(y_true, y_pred)
print("\nMicro Accuracy: ", np.round(micro_acc, decimals=5))
macro_acc = accuracy_score(y_true, y_pred, normalize=True)
print("\nMacro Accuracy: ", np.round(macro_acc, decimals=4))
mcc = matthews_corrcoef(y_true, y_pred)
print("\nMCC: ", np.round(mcc, decimals=4))
tn, fp, fn, tp = cm.ravel()
recall = tp / (tp + fn) # TPR
print("\nSensitivity: ", np.round(recall, decimals=5))
spec = tn/ (tn + fp)
print("\nSpecificity of artifact-free class: ", np.round(spec, decimals=5))
plt.clf()
plot_roc_curve_v4(dframe, sensitivity_val = sens_thresh, title=f"{load_model}_ROC_binary_test")
plt.savefig(f"{sav_dir}/{load_model}_ROC_binary_test.png")
print("\n## Finished ##")