-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathloss.py
144 lines (120 loc) · 5.19 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from typing import Tuple
import torch
from torch import nn
def gaussian(x: torch.Tensor, mu: torch.Tensor, sigma: float) -> torch.Tensor:
"""1D Gaussian distribution. The distribution amplitude is 1.0.
Args:
x (torch.Tensor): 1D tensor of X values, (X,).
mu (torch.Tensor): Mean values for gaussian (B, N).
sigma (float): Standard deviation in scale of X axis.
Returns:
torch.Tensor: Resulted 1d gaussians: (B, N, X).
"""
return torch.exp(-(torch.div(x - mu.unsqueeze(-1), sigma) ** 2) / 2.0)
def create_heatmaps(keypoints: torch.Tensor, sigma: float,
pred_size: Tuple[int, int] = (68, 120)) -> torch.Tensor:
"""Create Gaussian distributions heatmaps for keypoints.
Each heatmap is drawn on an individual channel.
Args:
keypoints (torch.Tensor): A batch (B) of N points, each point is (x, y).
Expected shape: (B, N, 2).
sigma (float): Standard deviation.
pred_size (Tuple[int, int]): Size of the 2D Gaussian distribution canvas
(H, W). Defaults to (68, 120).
Returns:
(torch.Tensor): Resulted Gaussian heatmaps: (B, N, H, W).
"""
h, w = pred_size
device = keypoints.device
x = keypoints[:, :, 0]
y = keypoints[:, :, 1]
x_range = torch.arange(0, w, device=device, dtype=torch.float32)
y_range = torch.arange(0, h, device=device, dtype=torch.float32)
gauss_x: torch.Tensor = gaussian(x_range, x, sigma)
gauss_y: torch.Tensor = gaussian(y_range, y, sigma)
heatmaps = torch.einsum("BNW, BNH -> BNHW", gauss_x, gauss_y)
visible_points = torch.any(keypoints == 1, dim=-1, keepdim=True)
zero = torch.tensor(0.0, device=device, dtype=torch.float32)
heatmaps = torch.where(visible_points.unsqueeze(-1), heatmaps, zero)
return heatmaps
class HRNetLoss(nn.Module):
def __init__(self, num_refinement_stages: int = 1,
sigma: float = 1.0,
stride: int = 1,
pred_size: Tuple[int, int] = (540, 960),
num_keypoints: int = 57,
l2_w: float = 1.0,
kldiv_w: float = 1.0,
awing_w: float = 0.0):
super().__init__()
self.sigma = sigma
self.stride = stride
self.pred_size = pred_size
self.num_keypoints = num_keypoints
self.n_losses = num_refinement_stages + 1
self.kldiv_loss = nn.KLDivLoss(reduction='batchmean')
self.mse = nn.MSELoss()
self.l2_w = l2_w
self.kldiv_w = kldiv_w
self.awing_w = awing_w
# Adaptive wing loss
self.alpha = 2.1
self.omega = 14
self.epsilon = 1
self.theta = 0.5
def create_target(self, keypoints: torch.Tensor) -> torch.Tensor:
heatmaps = create_heatmaps(keypoints, sigma=self.sigma,
pred_size=self.pred_size)
# Add the last channel with inverted heatmaps values
heatmaps = torch.cat(
[heatmaps, (1.0 - torch.max(heatmaps, dim=1, keepdim=True)[0])], 1)
return heatmaps
def forward(self, pred, target, mask=None):
keypoints = target.detach().clone().reshape(-1, self.num_keypoints, 3)
# Scale keypoints to the prediction tensor scale
keypoints[:, :, :2] /= self.stride
heatmap = self.create_target(keypoints)
if mask is not None:
mask = mask.unsqueeze(-1).unsqueeze(-1)
heatmap = heatmap * mask
losses = []
for loss_idx in range(self.n_losses):
if mask is None:
pred_masked = pred[loss_idx]
else:
pred_masked = pred[loss_idx] * mask
pred_01 = torch.exp(pred_masked) # As we have log on output
loss = 0
if self.l2_w > 0.0:
loss += self.l2_w * self.mse(pred_01, heatmap)
if self.kldiv_w > 0.0:
loss += self.kldiv_w * self.kldiv_loss(pred_masked, heatmap)
if self.awing_w > 0.0:
loss += self.awing_w * self.adaptive_wing(pred_01, heatmap)
losses.append(loss)
loss = losses[0]
for loss_idx in range(1, len(losses)):
loss += losses[loss_idx]
return loss
def l2_loss(self, pred, target, mask=None):
loss = pred - target
if mask is not None:
loss = loss * mask
batch_size = target.shape[0]
loss = (loss * loss)
return loss.sum() / 2.0 / batch_size
def adaptive_wing(self, pred, target):
delta = (target - pred).abs()
alpha_t = self.alpha - target
A = self.omega * (
1 / (1 + torch.pow(self.theta / self.epsilon,
alpha_t))) * alpha_t\
* (torch.pow(self.theta / self.epsilon,
self.alpha - target - 1)) * (1 / self.epsilon)
C = self.theta * A - self.omega * torch.log(
1 + torch.pow(self.theta / self.epsilon, alpha_t))
losses = torch.where(delta < self.theta,
self.omega * torch.log(
1 + torch.pow(delta / self.epsilon, alpha_t)),
A * delta - C)
return torch.mean(losses)