-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgradio_set.py
104 lines (83 loc) · 4.55 KB
/
gradio_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
from scripts.multimodal_sample import multimodal_diff
from scripts.multimodal_face_sample import face_diffusion
import numpy as np
def greet(name):
return "Hello " + name + "!"
import json
import os
idx2label = []
cls2label = {}
from scripts.multimodal_gradio import Multimodalgradio
from download_models_func import download_files
download_files()
uniconquer =Multimodalgradio()
with open("class_utils/imagenet_class_index.json", "r") as read_file:
class_idx = json.load(read_file)
idx2label = [class_idx[str(k)][1] for k in range(len(class_idx))]
cls2label = {class_idx[str(k)][0]: class_idx[str(k)][1] for k in range(len(class_idx))}
def class_find(label):
return idx2label[label]
examples=[["A yellow flower field", 358],
["A road leading to mountains", 850],
["Photo of a beach", 200],
["A wheat field", 291],
["A garden of cherry blossom trees", 292]]
# print(os.path.exists("./data/face_map/00008.jpg"))
images=sorted(os.listdir('./data/face_map'))
examples_face=[]
examples_text=["A person with blonde hair","A person with black hair","A person with eyeglasses"]
for _ in images:
textind=np.random.randint(3)
text=examples_text[textind]
examples_face.append(["./data/face_map/"+_, "./data/hair_map/"+_,"./data/sketch/"+_,text])
with gr.Blocks(css=".gradio-container {background-color: white}") as demo:
gr.Markdown(
"# Unite and Conquer: Plug & Play Multimodal Synthesis using Diffusion Models"
)
gr.Markdown(
"""
Enjoy composite synthesis (Scroll down for examples)
"""
)
with gr.Tab("Multimodal Generic"):
with gr.Row(variant='default'):
with gr.Column(variant='panel'):
text_input=gr.Textbox(label="Step 1:Type a text prompt here")
class_input=gr.Slider(minimum=0,maximum=999,step=1,interactive=True,label="Step 2: Slide to select an ImageNet Class")
class_name=gr.Textbox(label="Corresponding ImageNet Class name(default: Tibetian Terrier)")
class_button=gr.Button("Find class")
sample_input=gr.Slider(minimum=1,maximum=32,step=1,interactive=True,label="How many samples do you need?")
synth_button=gr.Button("Generate")
diff_output=gr.Image(shape=(50,50))
gr.Examples(examples,[text_input,class_input])
synth_button.click(fn=uniconquer.natural_images,inputs=[text_input,class_input, sample_input],outputs=[diff_output])
class_button.click(fn=class_find,inputs=[class_input],outputs=[class_name])
with gr.Tab("Multimodal Face"):
with gr.Row(variant='default'):
with gr.Column(variant='panel'):
text_input_face = gr.Textbox(label="Type a text prompt here")
modality_input = gr.CheckboxGroup(["Face_map","Hair_map","Text","Sketch"],label="Step 2: Enter modalities required(Always check these boxes)")
gr.Markdown('Input Images(Check out examples at the footer!)(You need to give all three modes)')
with gr.Row(variant='panel'):
face_input= gr.Image(shape=(256,256), label='Input face semantic map')
hair_input= gr.Image(shape=(256,256), label='Input hair semantic map')
sketch_input= gr.Image(shape=(256,256), label='Input sketch map')
face_synth_button=gr.Button("Generate Face")
diff_output=gr.Image(shape=(50,50))
face_synth_button.click(fn=uniconquer.face_images,inputs=[text_input_face,face_input,hair_input,sketch_input,modality_input],outputs=[diff_output])
# print(examples_face)
gr.Markdown(
"### Examples "
)
gr.Examples(examples_face,[face_input,hair_input,sketch_input,text_input_face])
demo.launch(share=True)
# examples_face_map=['./data/face_map/10008.jpg','./data/face_map/10004.jpg','./data/face_map/10005.jpg']
# examples_hair_map=['./data/hair_map/10008.jpg','./data/hair_map/10004.jpg','./data/hair_map/10005.jpg']
# examples_sketch_map=['./data/sketch/10008.jpg','./data/sketch/10004.jpg','./data/sketch/10005.jpg']
# examples_text=["A person with blonde hair","A person with black hair","A person with eyeglasses"]
# with gr.Row(variant='panel'):
# gr.Examples(examples_face_map,[face_input], label="Face Map")
# gr.Examples(examples_hair_map,[hair_input], label="Hair Map")
# gr.Examples(examples_sketch_map,[sketch_input], label="Sketch")
# gr.Examples(examples_text,[text_input_face], label="Text")