-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_tfrecords.py
486 lines (392 loc) · 18 KB
/
create_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
"""
Create the tfrecord files for a dataset.
A lot of this code comes from the tensorflow inception example, so here is their license:
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
from __future__ import absolute_import
import argparse
from datetime import datetime
import hashlib
import json
import os
import pathlib
from queue import Queue
import random
import sys
import threading
import numpy as np
import tensorflow as tf
tf.compat.v1.disable_eager_execution()
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _float_feature(value):
"""Wrapper for inserting float features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _bytes_list_feature(value):
"""Wrapper for inserting bytes list features into Example proto."""
value = [x.encode('utf8') for x in value]
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
if not isinstance(value, bytes):
value = value.encode('utf8')
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _validate_text(text):
"""If text is not str or unicode, then try to convert it to str."""
if isinstance(text, str):
return text
else:
return str(text)
def _convert_to_example(image_example, image_buffer, height, width, colorspace='RGB',
channels=3, image_format='JPEG'):
"""Build an Example proto for an example.
Args:
image_example: dict, an image example
image_buffer: string, JPEG encoding of RGB image
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto
"""
# Required
filename = str(image_example['filename'])
image_id = str(image_example['id'])
# Class label for the whole image
image_class = image_example.get('class', {})
class_label = image_class.get('label', 0)
class_text = _validate_text(image_class.get('text', ''))
class_conf = image_class.get('conf', 1.)
# Objects
image_objects = image_example.get('object', {})
object_count = image_objects.get('count', 0)
# Bounding Boxes
image_bboxes = image_objects.get('bbox', {})
xmin = image_bboxes.get('xmin', [])
xmax = image_bboxes.get('xmax', [])
ymin = image_bboxes.get('ymin', [])
ymax = image_bboxes.get('ymax', [])
bbox_scores = image_bboxes.get('score', [])
bbox_labels = image_bboxes.get('label', [])
bbox_text = map(_validate_text, image_bboxes.get('text', []))
bbox_label_confs = image_bboxes.get('conf', [])
# Parts
image_parts = image_objects.get('parts', {})
parts_x = image_parts.get('x', [])
parts_y = image_parts.get('y', [])
parts_v = image_parts.get('v', [])
parts_s = image_parts.get('score', [])
# Areas
object_areas = image_objects.get('area', [])
# Ids
object_ids = map(str, image_objects.get('id', []))
# Any extra data (e.g. stringified json)
extra_info = str(image_class.get('extra', ''))
# Additional fields for the format needed by the Object Detection repository
key = hashlib.sha256(image_buffer).hexdigest()
is_crowd = image_objects.get('is_crowd', [])
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': _int64_feature(height),
'image/width': _int64_feature(width),
'image/colorspace': _bytes_feature(colorspace),
'image/channels': _int64_feature(channels),
'image/format': _bytes_feature(image_format),
'image/filename': _bytes_feature(filename),
'image/id': _bytes_feature(image_id),
'image/encoded': _bytes_feature(image_buffer),
'image/extra': _bytes_feature(extra_info),
'image/class/label': _int64_feature(class_label),
'image/class/text': _bytes_list_feature(class_text),
'image/class/conf': _float_feature(class_conf),
'image/object/bbox/xmin': _float_feature(xmin),
'image/object/bbox/xmax': _float_feature(xmax),
'image/object/bbox/ymin': _float_feature(ymin),
'image/object/bbox/ymax': _float_feature(ymax),
'image/object/bbox/label': _int64_feature(bbox_labels),
'image/object/bbox/text': _bytes_list_feature(bbox_text),
'image/object/bbox/conf': _float_feature(bbox_label_confs),
'image/object/bbox/score' : _float_feature(bbox_scores),
'image/object/parts/x' : _float_feature(parts_x),
'image/object/parts/y' : _float_feature(parts_y),
'image/object/parts/v' : _int64_feature(parts_v),
'image/object/parts/score' : _float_feature(parts_s),
'image/object/count' : _int64_feature(object_count),
'image/object/area' : _float_feature(object_areas),
'image/object/id' : _bytes_list_feature(object_ids),
# Additional fields for the format needed by the Object Detection repository
'image/source_id': _bytes_list_feature(image_id),
'image/key/sha256': _bytes_feature(key),
'image/object/class/label': _int64_feature(bbox_labels),
'image/object/class/text': _bytes_list_feature(bbox_text),
'image/object/is_crowd': _int64_feature(is_crowd)
}))
return example
class ImageCoder(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.compat.v1.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.compat.v1.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.compat.v1.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
def png_to_jpeg(self, image_data):
# Convert the image data from png to jpg
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
# Decode the image data as a jpeg image
image = self._sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3, "JPEG needs to have height x width x channels"
assert image.shape[2] == 3, "JPEG needs to have 3 channels (RGB)"
return image
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
_, file_extension = os.path.splitext(filename)
return file_extension.lower() == '.png'
def _process_image(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
image_data = tf.io.gfile.GFile(filename, 'rb').read() # tf.gfile.FastGFile
# Clean the dirty data.
if _is_png(filename):
image_data = coder.png_to_jpeg(image_data)
# Decode the RGB JPEG.
image = coder.decode_jpeg(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3
return image_data, height, width
def _process_image_files_batch(coder, thread_index, ranges, name, output_directory,
dataset, num_shards, store_images, error_queue):
"""Processes and saves list of images as TFRecord in 1 thread.
Args:
coder: instance of ImageCoder to provide TensorFlow image coding utils.
thread_index: integer, unique batch to run index is within [0, len(ranges)).
ranges: list of pairs of integers specifying ranges of each batches to
analyze in parallel.
name: string, unique identifier specifying the data set (e.g. `train` or `test`)
output_directory: string, file path to store the tfrecord files.
dataset: list, a list of image example dicts
num_shards: integer number of shards for this data set.
store_images: bool, should the image be stored in the tfrecord
error_queue: Queue, a queue to place image examples that failed.
"""
# Each thread produces N shards where N = int(num_shards / num_threads).
# For instance, if num_shards = 128, and the num_threads = 2, then the first
# thread would produce shards [0, 64).
num_threads = len(ranges)
assert not num_shards % num_threads
num_shards_per_batch = int(num_shards / num_threads)
shard_ranges = np.linspace(ranges[thread_index][0],
ranges[thread_index][1],
num_shards_per_batch + 1).astype(int)
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
error_counter = 0
for s in range(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
# output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
# write count in tfrecord filename -- tfrecords don't store metadata info -
# so its better to store count in filname -
# it will avoid iterating whole dataset to counting records
output_filename = '%s-%.2d-of-%.2d-cnt-.tfrec' % (name, shard, num_shards)
output_file = os.path.join(output_directory, output_filename)
writer = tf.io.TFRecordWriter(output_file)
shard_counter = 0
files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int)
for i in files_in_shard:
image_example = dataset[i]
filename = str(image_example['filename'])
try:
if store_images:
if 'encoded' in image_example:
image_buffer = image_example['encoded']
height = image_example['height']
width = image_example['width']
colorspace = image_example['colorspace']
image_format = image_example['format']
num_channels = image_example['channels']
example = _convert_to_example(image_example, image_buffer, height,
width, colorspace, num_channels,
image_format)
else:
image_buffer, height, width = _process_image(filename, coder)
example = _convert_to_example(image_example, image_buffer, height,
width)
else:
image_buffer=''
height = int(image_example['height'])
width = int(image_example['width'])
example = _convert_to_example(image_example, image_buffer, height,
width)
writer.write(example.SerializeToString())
shard_counter += 1
counter += 1
except Exception as e:
raise
error_counter += 1
error_msg = repr(e)
image_example['error_msg'] = error_msg
error_queue.put(image_example)
if not counter % 1000:
print('%s [thread %d]: Processed %d of %d images in thread batch, with %d errors.' %
(datetime.now(), thread_index, counter, num_files_in_thread, error_counter))
sys.stdout.flush()
# add total image count in tfrecord filename
# it will avoid iterating dataset to get count
path = pathlib.Path(output_file)
old_name = path.stem
old_extension = path.suffix
directory = path.parent
new_name = old_name + str(shard_counter) + old_extension
new_output_file = pathlib.Path(directory, new_name)
path.rename(new_output_file) # rename file on disk
print('%s [thread %d]: Wrote %d images to %s, with %d errors.' %
(datetime.now(), thread_index, shard_counter, new_output_file, error_counter))
sys.stdout.flush()
shard_counter = 0
print('%s [thread %d]: Wrote %d images to %d shards, with %d errors.' %
(datetime.now(), thread_index, counter, num_files_in_thread, error_counter))
sys.stdout.flush()
def create(dataset, dataset_name, output_directory, num_shards, num_threads, shuffle=True, store_images=True):
"""Create the tfrecord files to be used to train or test a model.
Args:
dataset : [{
"filename" : <REQUIRED: path to the image file>,
"id" : <REQUIRED: id of the image>,
"class" : {
"label" : <[0, num_classes)>,
"text" : <text description of class>
},
"object" : {
"bbox" : {
"xmin" : [],
"xmax" : [],
"ymin" : [],
"ymax" : [],
"label" : []
}
}
}]
dataset_name: a name for the dataset
output_directory: path to a directory to write the tfrecord files
num_shards: the number of tfrecord files to create
num_threads: the number of threads to use
shuffle : bool, should the image examples be shuffled or not prior to creating the tfrecords.
Returns:
list : a list of image examples that failed to process.
"""
# Images in the tfrecords set must be shuffled properly
if shuffle:
random.shuffle(dataset)
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(dataset), num_threads + 1).astype(np.int)
ranges = []
threads = []
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
print('Launching %d threads for spacings: %s' % (num_threads, ranges))
sys.stdout.flush()
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
# Create a generic TensorFlow-based utility for converting all image codings.
coder = ImageCoder()
# A Queue to hold the image examples that fail to process.
error_queue = Queue()
threads = []
for thread_index in range(len(ranges)):
args = (coder, thread_index, ranges, dataset_name, output_directory, dataset,
num_shards, store_images, error_queue)
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(dataset)))
# Collect the errors
errors = []
while not error_queue.empty():
errors.append(error_queue.get())
print ('%d examples failed.' % (len(errors),))
return errors
def parse_args():
parser = argparse.ArgumentParser(description='Basic statistics on tfrecord files')
parser.add_argument('--dataset_path', dest='dataset_path',
help='Path to the dataset json file.', type=str,
required=True)
parser.add_argument('--prefix', dest='dataset_name',
help='Prefix for the tfrecords (e.g. `train`, `test`, `val`).', type=str,
required=True)
parser.add_argument('--output_dir', dest='output_dir',
help='Directory for the tfrecords.', type=str,
required=True)
parser.add_argument('--shards', dest='num_shards',
help='Number of shards to make.', type=int,
required=True)
parser.add_argument('--threads', dest='num_threads',
help='Number of threads to make.', type=int,
required=True)
parser.add_argument('--shuffle', dest='shuffle',
help='Shuffle the records before saving them.',
required=False, action='store_true', default=False)
parser.add_argument('--store_images', dest='store_images',
help='Store the images in the tfrecords.',
required=False, action='store_true', default=False)
parsed_args = parser.parse_args()
return parsed_args
def main():
args = parse_args()
with open(args.dataset_path) as f:
dataset = json.load(f)
errors = create(
dataset=dataset,
dataset_name=args.dataset_name,
output_directory=args.output_dir,
num_shards=args.num_shards,
num_threads=args.num_threads,
shuffle=args.shuffle,
store_images=args.store_images
)
return errors
if __name__ == '__main__':
main()