-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdroste.py
302 lines (247 loc) · 11.8 KB
/
droste.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
import cv2
import random
import sys
import os.path
# Math explained here: http://www.josleys.com/article_show.php?id=82
class Droste:
def __init__(self, fPath, repeatsX, repeatsY, r1, r2, xRange, yRange, resultFolderAddress):
self.repeatsX = repeatsX
self.repeatsY = repeatsY
self.r1 = min(r1, r2)
self.r2 = max(r1, r2)
self.inputImg = cv2.imread(fPath, cv2.IMREAD_UNCHANGED) #returns a matrix-like object
self.xRange = xRange
self.yRange = yRange
self.resultFolderAddress = resultFolderAddress
def Transform(self, method):
# Builds new plane
img, r, c, Z = self.CreateComplexPlane()
if method == 1:
# 1: Ln -> Tile -> Rotate -> exponent
self.Calculate1(Z, r, c) # takes in the complex plane, outputs the transformed plane
else:
# 0: Ln -> Rotate -> Tile -> exponent
self.Calculate(Z, r, c) # takes in the complex plane, outputs the transformed plane
def CreateComplexPlane(self):
'''
:param self: loads the input image
:return: the image as matrix, nbr of rows, nbr of cols, complex plane
'''
img = self.inputImg
r = img.shape[0] #nbr of rows
c = img.shape[1] #nbr of cols
x = np.linspace(-self.xRange, self.xRange, num=r, endpoint=True, dtype=np.float32) #Returns an array of evenly spaced numbers over a specified interval.
y = np.linspace(-self.yRange, self.yRange, num=c, endpoint=True, dtype=np.float32)
X, Y = np.meshgrid(x, y, indexing='ij') #creates rect grid off arrays, here it uses Matrix indexing. Returns X, Y coordinates
Z = X + (1j * Y); # Transf to the Complex Plane (then we will transform back to Cartesian) 1J is the imaginary part.
return img, r, c, Z
def TILE(self, W, r, c, repeatX, repeatY):
X = W.real
Y = W.imag
xOffset = np.log(self.r2 / self.r1)
repeatYHalf = int((repeatY - 1)/2)
repeatXHalf = int((repeatX - 1)/2)
for i in range(-repeatYHalf, repeatYHalf + 1):
W2 = None
for j in range(-repeatXHalf, repeatXHalf + 1):
if 0 == repeatXHalf + j:
W2 = X + j * xOffset + (Y + 2 * np.pi * i) * 1j
else:
W2 = np.concatenate([W2, X + j * xOffset + (Y + np.pi*2*i) * 1j], axis=0)
if 0 == repeatYHalf + i:
W1 = W2
else:
W1 = np.concatenate([W1, W2], axis=1)
return W1
def TILE2(self, W, X, Y, repeatX, repeatY):
X = W.real
Y = W.imag
repeatYHalf = int((repeatY - 1)/2)
repeatXHalf = int((repeatX - 1)/2)
alpha = np.arctan2(np.log(max(self.r2,self.r1) / min(self.r1, self.r2)), 2 * np.pi) # we need alpha to calculate the offsets
cosine = np.cos(alpha)
sine = np.sin(alpha)
yOffset = 2 * np.pi * sine * sine
xOffset = 2 * np.pi * sine * cosine
for i in range(-repeatYHalf, repeatYHalf + 1):
W2 = None
for j in range(-repeatXHalf, repeatXHalf + 1):
if 0 == repeatXHalf + j:
W2 = X + j * xOffset + ((Y + (2 * np.pi * i + yOffset * j)) * 1j)
else:
W2 = np.concatenate([W2, X + j * xOffset + ((Y + (2 * np.pi * i + yOffset * j)) * 1j)], axis=0)
if 0 == repeatYHalf + i:
W1 = W2
else:
W1 = np.concatenate([W1, W2], axis=1)
return W1
def LogTransform(self, Z, r, c):
'''
:param Z: Complex plane
:param r: nbr of rows
:param c: nbr of cols
:return: np.log(z / min(r1, r2))
'''
Z1 = np.zeros([r, c], dtype=complex)
ZAbs = np.absolute(Z)
elemetsToApplyTransformation = (self.r1 <= ZAbs) & (ZAbs <= self.r2)
Z1[elemetsToApplyTransformation] = np.log(Z[elemetsToApplyTransformation])
return Z1
def ExponentTransform(self, Z, r, c, repeatX, repeatY):
Z1 = Z[:r * repeatX, :c * repeatY].copy()
Z1 = np.exp(Z)
return Z1
def RotationTransform(self, Z, r, c, repeatX, repeatY):
Z1 = Z[:r * repeatX, :c * repeatY].copy()
alpha = np.arctan2(np.log(self.r2 / self.r1), 2 * np.pi)
f = np.cos(alpha)
Z1 = Z * f * np.exp(1j * alpha)
return Z1
def Calculate(self, Z, r, c):
print(Z.shape)
W1 = self.LogTransform(Z, r, c)
# self.ReCreateImageAndSave(W1, "log-{}.{}-{}.{}-{}.jpg".format(0, self.r1, self.r2, 1, 1), r, c, 1, 1)
W1 = self.RotationTransform(W1, r, c, 1, 1)
# self.ReCreateImageAndSave(W1, "rot-{}.{}-{}.{}-{}.jpg".format(0, self.r1, self.r2, 1, 1), r, c, 1, 1)
repeatX = self.repeatsX
repeatY = self.repeatsY
W1 = self.TILE2(W1, r, c, repeatX, repeatY)
print(W1.shape)
# self.ReCreateImageAndSave(W1, "tile-{}.{}-{}.{}-{}.jpg".format(0, self.r1, self.r2, repeatX, repeatY), r, c, repeatX, repeatY)
W1 = self.ExponentTransform(W1, r, c, repeatX, repeatY)
self.ReCreateImageAndSave(W1, "final-{}.{}-{}.{}-{}.jpg".format(0, self.r1, self.r2, repeatX, repeatY), r, c, repeatX, repeatY)
def Calculate1(self, Z, r, c):
print(Z.shape)
# apply Ln(z/r1)
W1 = self.LogTransform(Z, r, c)
# self.ReCreateImageAndSave(W1, "log-{}.{}-{}.{}-{}.jpg".format(1, self.r1, self.r2, 1, 1), r, c, 1, 1)
# choose how many tiles we want to add
repeatX = self.repeatsX
repeatY = self.repeatsY
# apply Tile
W1 = self.TILE(W1, r, c, repeatX, repeatY)
print(W1.shape)
# self.ReCreateImageAndSave(W1, "rot-{}.{}-{}.{}-{}.jpg".format(1, self.r1, self.r2, repeatX, repeatY), r, c, repeatX, repeatY)
# apply Rotation
W1 = self.RotationTransform(W1, r, c, repeatX, repeatY)
# self.ReCreateImageAndSave(W1, "tile-{}.{}-{}.{}-{}.jpg".format(1, self.r1, self.r2, repeatX, repeatY), r, c, repeatX, repeatY)
# apply exponent
W1 = self.ExponentTransform(W1, r, c, repeatX, repeatY)
self.ReCreateImageAndSave(W1, "final-{}.{}-{}.{}-{}.jpg".format(1, self.r1, self.r2, repeatX, repeatY), r, c, repeatX, repeatY)
def makeNewXY(self, W, wmax, x):
return np.multiply(np.add(np.divide(W, wmax), 1), x / 2)
def GetNewXY(self, W, r, c, repeatX, repeatY):
Wx = np.real(W)
Wy = np.imag(W)
wxmax = np.absolute(Wx).max()
wymax = np.absolute(Wy).max()
XNew = self.makeNewXY(Wx, wxmax, c * repeatY)
YNew = self.makeNewXY(Wy, wymax, r * repeatX)
return XNew, YNew
def ReCreateImage(self, Xnew, Ynew, img, r, c, repeatX, repeatY):
'''
:param Xnew:
:param Ynew:
:param img:
:param r:
:param c:
:param repeat:
:return: A matrix representing the pic in the new coordinates
'''
# newImg = np.zeros([r * repeatX, c * repeatY, 3])
imgList = img.tolist()
XnewList = Xnew.tolist()
YnewList = Ynew.tolist()
newImgList = [[[0, 0, 0] for j in range(c * repeatY)] for i in range(r * repeatX)]
for i in range(r * repeatX):
for j in range(c * repeatY):
if int(XnewList[i][j]) == c * repeatY:
XnewList[i][j] = c * repeatY - 1
if int(YnewList[i][j]) == r * repeatX:
YnewList[i][j] = r * repeatX - 1
newImgList[int(YnewList[i][j])][int(XnewList[i][j])] = imgList[i % r][j % c][:3] # extract RGB from inputImage
newImg = np.array(newImgList)
return newImg
# I know this is overkill
# need to find a opencv equivalent
# if you know tell me plz :)
def FixBlackPixels(self, img, r, c, repeatX, repeatY):
global image, limitR, limitC
black = [0,0,0]
image = img
limitR = r * repeatX - 1
limitC = c * repeatY - 1
imgList = img.tolist()
for i in range(limitR):
for j in range(limitC):
if imgList[i][j] == black:
n = 0
temp = [0,0,0]
# diagonal screws the result
for u, v in [(1, 0), (-1, 0), (2, 0), (-2, 0), (0, 1), (0, -1), (0, 2), (0, -2)]:
if not (u == 0 and v == 0):
if 0 <= i + u and i + u <= limitR and 0<= j + v and j + v <= limitC:
if imgList[i + u][j + v] != black:
n += 1
temp = [imgList[i + u][j + v][k] + temp[k] for k in range(3)]
if n != 0:
imgList[i][j] = [temp[k] / n for k in range(3)]
img = np.array(imgList)
return img
def ReCreateImageAndSave(self, W, imgTitle, r, c, repeatX, repeatY):
xNew, yNew = self.GetNewXY(W, r, c, repeatX, repeatY)
img = self.ReCreateImage(xNew, yNew, self.inputImg, r, c, repeatX, repeatY)
img = self.FixBlackPixels(img, r, c, repeatX, repeatY)
# img[blackPixels] = cv2.blur(img.astype(np.float32), (5, 5))
# img = cv2.medianBlur(img.astype(np.float32), 5)
cv2.imwrite(self.resultFolderAddress + '/' + imgTitle, img)
def GetCommandLineArgs():
'''
Gets command line argumets, does some error checking.
:return: command line arguments
fPath must be valid
method must be 0 or 1
repeats must be positive and odd
'''
if len(sys.argv) == 5:
fPath = sys.argv[1] # Get input File name
method = int(sys.argv[2])
repeatsX = int(sys.argv[3])
repeatsY = int(sys.argv[4])
if not os.path.isfile(fPath):
sys.exit("Input picture does not exist")
if not (method == 0 or method == 1):
sys.exit("Method must be 0 or 1")
if repeatsX <= 0 or repeatsX & 1 == 0:
sys.exit("Repeats must be positive and odd")
if repeatsY <= 0 or repeatsY & 1 == 0:
sys.exit("Repeats must be positive and odd")
return fPath, method, repeatsX, repeatsY
else:
sys.exit("Need only two command line argument and that's the address of input picture and method number\nMethod number is either 0 or 1\nRepeats must be positive and odd")
def CreateOutputFolder(inputImagePath, repeatsX, repeatsY, method, r1, r2):
'''
:param inputImagePath: address of our input image
:param repeats: number of repeats
:return: address of the result folder
'''
inputImageName = inputImagePath.split('/')[-1] # extract input image name
outputFolder = "OutputImages/" # pictures will be stored
resultFolderAddress = outputFolder + inputImageName + "-{}.{}-{}.{}-{}.jpg".format(method, r1, r2, repeatsX, repeatsY) # the folder that our code is stored in
if not os.path.exists(resultFolderAddress): # create the result folder
os.makedirs(resultFolderAddress)
return resultFolderAddress
def main():
inputImagePath, method, repeatsX, repeatsY = GetCommandLineArgs()
# We have two methods of calculating the result
# 0: Ln -> Rotate -> Tile -> exponent
# 1: Ln -> Tile -> Rotate -> exponent
r1 = 0.2 # inner circle radius
r2 = 0.9 # outer circle radius
resultFolderAddress = CreateOutputFolder(inputImagePath, repeatsX, repeatsY, method, r1, r2)
d = Droste(inputImagePath, repeatsX, repeatsY, r1, r2, -1, 1, resultFolderAddress)
print('be patient plz')
d.Transform(method)
if __name__ == "__main__":
main()