-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.sh
42 lines (39 loc) · 2.26 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/usr/bin/env bash
CHECKPOINT_PATH=checkpoints/train # path to save checkpoints
mkdir -p $CHECKPOINT_PATH
rm -f $CHECKPOINT_PATH/checkpoint_best.pt
cp checkpoints/pretrain/checkpoint_best.pt $CHECKPOINT_PATH/
TOTAL_UPDATES=20000 # Total number of training steps
WARMUP_UPDATES=100 # Warmup the learning rate over this many updates
PEAK_LR=1e-5 # Peak learning rate, adjust as needed
TOKENS_PER_SAMPLE=512 # Max sequence length
MAX_POSITIONS=512 # Num. positional embeddings (usually same as above)
MAX_SENTENCES=4 # Number of sequences per batch (batch size)
NUM_CLASSES=3069 # Vocabulary size of internal function name words, plus one for <unk> token (OOV words)
NUM_EXTERNAL=948 # Vocabulary size of external function names
NUM_CALLs=1 # Number of callers/internal callees/external calees per batch (batch size)
ENCODER_EMB_DIM=768 # Embedding dimension for encoder
ENCODER_LAYERS=8 # Number of encoder layers
ENCODER_ATTENTION_HEADS=12 # Number of attention heads for the encoder
TOTAL_EPOCHs=25 # Total number of training epochs
EXTERNAL_EMB="embedding" # External callee embedding methods, options: (one_hot, embedding)
DATASET_PATH="data_bin" # Path to the binarized dataset
CUDA_VISIBLE_DEVICES=0 python train.py \
$DATASET_PATH \
--ddp-backend=no_c10d \
--num-classes $NUM_CLASSES --num-external $NUM_EXTERNAL \
--external-emb $EXTERNAL_EMB --num-calls $NUM_CALLs \
--task func_name_pred --criterion func_name_pred --arch func_name_pred \
--reset-optimizer --reset-dataloader --reset-meters \
--optimizer adam --adam-betas '(0.9,0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
--lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES \
--total-num-update $TOTAL_UPDATES \
--max-epoch $TOTAL_EPOCHs \
--update-freq 2 \
--dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
--best-checkpoint-metric F1 --maximize-best-checkpoint-metric \
--encoder-layers $ENCODER_LAYERS --encoder-embed-dim $ENCODER_EMB_DIM --encoder-attention-heads $ENCODER_ATTENTION_HEADS \
--max-positions $MAX_POSITIONS --max-sentences $MAX_SENTENCES \
--max-update $TOTAL_UPDATES --log-format json --log-interval 10 \
--no-epoch-checkpoints --save-dir $CHECKPOINT_PATH/ \
--restore-file $CHECKPOINT_PATH/checkpoint_best.pt