-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_Prep.py
58 lines (46 loc) · 1.91 KB
/
data_Prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import torch
import torch.utils
import torch.utils.data
import os
from torchvision import transforms
from random import random, sample
from PIL import Image
class Dataset_LOL(torch.utils.data.Dataset):
def __init__(self, raw_dir, exp_dir, subset_img=None, size=None, training=True):
self.raw_dir = raw_dir
self.exp_dir = exp_dir
self.subset_img = subset_img
self.size = size
if subset_img is not None:
self.listfile = sample(os.listdir(raw_dir), self.subset_img)
else:
self.listfile = os.listdir(raw_dir)
transformation = []
if training:
transformation.append(transforms.RandomHorizontalFlip(0.5))
if size is not None:
if random() > 0.5:
transformation.append(transforms.RandomResizedCrop((size, size)))
if size is not None:
transformation.append(transforms.Resize((size, size)))
self.transforms = transforms.Compose(transformation)
def __len__(self):
return len(self.listfile)
def __getitem__(self, index):
raw = transforms.ToTensor()(Image.open(self.raw_dir + self.listfile[index]))
expert = transforms.ToTensor()(Image.open(self.exp_dir + self.listfile[index]))
if raw.shape != expert.shape:
raw = transforms.Resize((self.size, self.size))(raw)
expert = transforms.Resize((self.size, self.size))(expert)
raw_exp = self.transforms(torch.stack([raw, expert]))
return raw_exp[0], raw_exp[1]
class LoadDataset(torch.utils.data.Dataset):
def __init__(self, raw_list, prob_list, win):
self.raw_list = raw_list
self.prob_list = prob_list
self.win = win
self.indices = []
def __len__(self):
return len(self.raw_list)
def __getitem__(self, index):
return self.raw_list[index], self.prob_list[index], torch.tensor(self.win[index])