-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation.py
executable file
·172 lines (141 loc) · 5.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
import warnings
import torch
import torch.utils
import torch.utils.data
import numpy as np
from data_Prep import Dataset_LOL
import Actions as Actions
import Network
import tqdm
import mcts
import argparse
from ptcolor import deltaE94, rgb2lab
warnings.filterwarnings("ignore")
NUM_ACTIONS = 37
MAX_DEPTH = 10
STOP_ACTION = NUM_ACTIONS - 1
IMAGE_SIZE = 256
def parse_args():
parser = argparse.ArgumentParser("Compute performace statistics.")
a = parser.add_argument
a("base_dir", help="dataset BASE Directory")
a("weight_file", help="File storing the weights of the CNN")
a("-s", "--steps", type=int, default=1000, help="Number of MCTS steps")
a("-e", "--exploration", type=float, default=10, help="Exploration coefficient")
a("-q", "--initial-q", type=float, default=0.5, help="Value for non-visited nodes")
a("-b", "--batch-size", type=int, default=30, help="Size of the mini batches")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
a("-d", "--device", default=device, help="Computing device")
return parser.parse_args()
class EvalState:
def __init__(self, image, depth=0):
self.image = image
self.depth = depth
self.stopped = False
def transition(self, action):
new_image = Actions.select(self.image[None], action)[0]
new_state = type(self)(new_image, self.depth + 1)
new_state.stopped = (action == STOP_ACTION)
return new_state
def terminal(self):
return self.depth >= MAX_DEPTH or self.stopped
def play_tree(net, images, device, steps, initial_q, exploration):
actions = STOP_ACTION + 1
samples = []
def transition(states, actions):
return [s.transition(a) for s, a in zip(states, actions)]
def evaluation(states):
t = [s.terminal() for s in states]
batch = torch.stack([s.image for s in states], 0)
batch = batch.to(device)
with torch.no_grad():
pi, values = net(batch)
pi = pi.cpu().numpy()
values = values.squeeze(1).cpu().numpy()
return t, values, pi
root_states = [EvalState(im) for im in images]
trees = mcts.MCTS(root_states, actions, transition, evaluation,
exploration=exploration, initial_q=initial_q)
trees.grow(steps)
return trees
def mse_error(x, y):
diff = (x - y).reshape(x.size(0), -1)
return (diff ** 2).mean(1)
def average_psnr(mses):
mses = np.maximum(np.array(mses), 1e-6)
return (-10 * np.log10(mses)).mean()
def eval_closest_node(trees, targets):
mses = []
for n in range(trees.roots):
sub = trees.subtree(n)
images = torch.stack([s.image for s in trees.x[sub]], 0)
mse = mse_error(images, targets[n:n + 1]).min()
mses.append(mse)
return mses
def eval_most_valuable_node(trees, targets):
mses = []
def key(i):
return trees.R[i] if trees.T[i] else -1
for n in range(trees.roots):
sub = trees.subtree(n)
best = max(sub, key=key)
image = trees.x[best].image[None]
mse = mse_error(image, targets[n:n + 1])
mses.append(mse.item())
return mses
def evaluation(val_loader, res, args):
res.eval()
mses = []
closest_mses = []
valuable_mses = []
l2s = []
diz = {k: 0 for k in range(NUM_ACTIONS)}
diz[-1] = 0
for img, target, name in tqdm.tqdm(val_loader):
trees = play_tree(res, img, args.device, args.steps, args.initial_q, args.exploration)
paths, actions, depths = trees.most_visited()
leaves = paths[np.arange(depths.size), depths - 1]
enhanced = torch.stack([s.image for s in trees.x[leaves]], 0)
for i in range(enhanced.shape[0]):
act = actions[i]
for ac in act:
diz[ac] += 1
if ac == STOP_ACTION:
break
l2s.append(torch.dist(enhanced[i], target[i], 2))
mse = mse_error(enhanced, target)
mses.extend(mse.tolist())
deltae = deltaE94(rgb2lab(enhanced), rgb2lab(target))
l2s = (torch.stack(l2s, 0)).mean()
closest_mses.extend(eval_closest_node(trees, target))
valuable_mses.extend(eval_most_valuable_node(trees, target))
print(diz)
print(f"PSNR {average_psnr(mses):.3f}")
def main():
args = parse_args()
print('STEPS:', args.steps)
BASEDIR = args.basedir
raw_dir = BASEDIR+'TEST/low/'
exp_dir = BASEDIR+'TEST/high/'
res = Network.ModifiedResnet(NUM_ACTIONS, 0.0)
res.to(args.device)
print("Loading", args.weight_file)
weights = torch.load(args.weight_file, map_location=args.device)
res.load_state_dict(weights)
val_set = Dataset_LOL(raw_dir, exp_dir, size=IMAGE_SIZE, training=False)
val_loader = torch.utils.data.DataLoader(val_set,
batch_size=args.batch_size,
drop_last=False,
shuffle=False,
num_workers=1)
import time
start = time.time()
evaluation(val_loader, res, args)
print('ELAPSED:', time.time() - start)
if __name__ == '__main__':
import resource
GB = (2 ** 30)
mem = 30 * GB
resource.setrlimit(resource.RLIMIT_DATA, (mem, resource.RLIM_INFINITY))
main()