forked from wvangansbeke/Unsupervised-Classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathselflabel.py
125 lines (104 loc) · 4.58 KB
/
selflabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"""
Authors: Wouter Van Gansbeke, Simon Vandenhende
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import os
import torch
from utils.config import create_config
from utils.common_config import get_train_dataset, get_train_transformations,\
get_val_dataset, get_val_transformations,\
get_train_dataloader, get_val_dataloader,\
get_optimizer, get_model, adjust_learning_rate,\
get_criterion
from utils.ema import EMA
from utils.evaluate_utils import get_predictions, hungarian_evaluate
from utils.train_utils import selflabel_train
from termcolor import colored
# Parser
parser = argparse.ArgumentParser(description='Self-labeling')
parser.add_argument('--config_env',
help='Config file for the environment')
parser.add_argument('--config_exp',
help='Config file for the experiment')
args = parser.parse_args()
def main():
# Retrieve config file
p = create_config(args.config_env, args.config_exp)
print(colored(p, 'red'))
# Get model
print(colored('Retrieve model', 'blue'))
model = get_model(p, p['scan_model'])
print(model)
model = torch.nn.DataParallel(model)
model = model.cuda()
# Get criterion
print(colored('Get loss', 'blue'))
criterion = get_criterion(p)
criterion.cuda()
print(criterion)
# CUDNN
print(colored('Set CuDNN benchmark', 'blue'))
torch.backends.cudnn.benchmark = True
# Optimizer
print(colored('Retrieve optimizer', 'blue'))
optimizer = get_optimizer(p, model)
print(optimizer)
# Dataset
print(colored('Retrieve dataset', 'blue'))
# Transforms
strong_transforms = get_train_transformations(p)
val_transforms = get_val_transformations(p)
train_dataset = get_train_dataset(p, {'standard': val_transforms, 'augment': strong_transforms},
split='train', to_augmented_dataset=True)
train_dataloader = get_train_dataloader(p, train_dataset)
val_dataset = get_val_dataset(p, val_transforms)
val_dataloader = get_val_dataloader(p, val_dataset)
print(colored('Train samples %d - Val samples %d' %(len(train_dataset), len(val_dataset)), 'yellow'))
# Checkpoint
if os.path.exists(p['selflabel_checkpoint']):
print(colored('Restart from checkpoint {}'.format(p['selflabel_checkpoint']), 'blue'))
checkpoint = torch.load(p['selflabel_checkpoint'], map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
else:
print(colored('No checkpoint file at {}'.format(p['selflabel_checkpoint']), 'blue'))
start_epoch = 0
# EMA
if p['use_ema']:
ema = EMA(model, alpha=p['ema_alpha'])
else:
ema = None
# Main loop
print(colored('Starting main loop', 'blue'))
for epoch in range(start_epoch, p['epochs']):
print(colored('Epoch %d/%d' %(epoch+1, p['epochs']), 'yellow'))
print(colored('-'*10, 'yellow'))
# Adjust lr
lr = adjust_learning_rate(p, optimizer, epoch)
print('Adjusted learning rate to {:.5f}'.format(lr))
# Perform self-labeling
print('Train ...')
selflabel_train(train_dataloader, model, criterion, optimizer, epoch, ema=ema)
# Evaluate (To monitor progress - Not for validation)
print('Evaluate ...')
predictions = get_predictions(p, val_dataloader, model)
clustering_stats = hungarian_evaluate(0, predictions, compute_confusion_matrix=False)
print(clustering_stats)
# Checkpoint
print('Checkpoint ...')
torch.save({'optimizer': optimizer.state_dict(), 'model': model.state_dict(),
'epoch': epoch + 1}, p['selflabel_checkpoint'])
torch.save(model.module.state_dict(), p['selflabel_model'])
# Evaluate and save the final model
print(colored('Evaluate model at the end', 'blue'))
predictions = get_predictions(p, val_dataloader, model)
clustering_stats = hungarian_evaluate(0, predictions,
class_names=val_dataset.classes,
compute_confusion_matrix=True,
confusion_matrix_file=os.path.join(p['selflabel_dir'], 'confusion_matrix.png'))
print(clustering_stats)
torch.save(model.module.state_dict(), p['selflabel_model'])
if __name__ == "__main__":
main()