Skip to content

3.2.x Performance

whoiami edited this page Aug 2, 2019 · 5 revisions

Performance:

0, Env

Disk: 2T NVME

CPU: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz * 40

Memory: 256G

Network Card: 10-Gigabit

OS: CentOS Linux release 7.4

1,Single Db

1.1, Write binlog with one slave

data size: 64bytes

key num: 1,000,000

TEST QPS
set 124347
get 283849

1.2, No binlog No slave

singleDb

1.3, Benchmark Result

WithBinlog&Slave QPS NoBinlog&Slave QPS
PING_INLINE 262329 272479
PING_BULK 262467 270562
SET 124953 211327
GET 284900 292568
INCR 120004 213766
MSET (10 keys) 64863 111578
MGET (10 keys) 224416 223513
MGET (100 keys) 29935 29550
MGET (200 keys) 15128 14912
LPUSH 117799 205380
RPUSH 117481 205212
LPOP 112120 200320
RPOP 119932 207986
LRANGE_10 (first 10 elements) 277932 284414
LRANGE_100 (first 100 elements) 165118 164355
LRANGE_300 (first 300 elements) 54907 55096
LRANGE_450 (first 450 elements) 36656 36630
LRANGE_600 (first 600 elements) 27540 27510
SADD 126230 208768
SPOP 103135 166555
HSET 122443 214362
HINCRBY 114757 208942
HINCRBYFLOAT 114377 208550
HGET 284900 290951
HMSET (10 fields) 58937 111445
HMGET (10 fields) 203624 205592
HGETALL 166861 160797
ZADD 106780 189178
ZREM 112866 201938
PFADD 4708 4692
PFCOUNT 27412 27345
PFMERGE 478 494

1.4, Compare Wiht Redis

With Redis AOF configuration appendfsync everysec, redis basically write data into memeory. However, pika uses rocksdb, which writes WAL on ssd druing every write batch. That comparation becomes multiple threads sequential write into ssd and one thread write into memory.

Put the fairness or unfairness aside. Here is the performance.

2, Cluster (Codis)

2.1, Topology:

WithBInlog&Slave

4 machine * 2 pika instance (Master)

4 machine * 2 pika instance (Slave)

NoBinlog&Slave

4 machine * 2 pika instance (Master)

Slots Distribution:

2.2, WithBinlog&Slave

Set

Command QPS
Set 1,400,000+

2.3, NoBinlog&Slave

Command QPS
Set 1,600,000+

2.4, Get Command

Command QPS
Get 2,300,000+

With or without binlog, for Get command, QPS is approximately the same.

Clone this wiki locally