-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathprocessed_mask.py
76 lines (62 loc) · 2.57 KB
/
processed_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
'''
Usage:
python processed_mask.py mask_dir processed_mask_dir
Example:
python processed_mask.py data/nuscenes/masks data/nuscenes/processed_masks
'''
import numpy as np
import cv2
import os
import time
from shutil import copyfile
import argparse
def main(input_dir:str, output_dir:str):
masks_list = os.listdir(input_dir)
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
else:
print("Error: output_dir already exist!")
return
for mask_name in masks_list:
input_dir_sub = input_dir + '/' + mask_name
output_dir_sub = output_dir + '/' + mask_name + '/'
os.makedirs(output_dir_sub)
mask_files = os.listdir(input_dir_sub)
n = 0
for file in mask_files:
if file[-4:] != '.png': continue
mask_ori = cv2.imread(input_dir_sub + '/' + file)
H, W, _ = mask_ori.shape
mask_ori = mask_ori > 128
mask_ori = np.asarray(mask_ori[:, :, 0], dtype=np.double)
n_white = np.sum(mask_ori)
gx, gy = np.gradient(mask_ori)
temp_edge = gy * gy + gx * gx
temp_edge[temp_edge != 0.0] = 1
if n_white < 0.02 * H * W:
copyfile(input_dir_sub + '/' + file, output_dir_sub + '/' + file)
else:
mask_new1 = np.zeros(mask_ori.shape, dtype=bool)
margin_inside = int(30 + H * W / n_white)
for i in range(H):
for j in range(W):
if temp_edge[i][j] != 0:
left = max(j - margin_inside, 0)
right = min(j + margin_inside, W - 1)
top = max(i - margin_inside,0)
bottom = min(i + margin_inside, H - 1)
mask_new1[top:bottom, left:right] = 1
mask_out = np.zeros(mask_ori.shape)
mask_out[np.logical_and(mask_ori, mask_new1)] = 255
np.asarray(mask_out, dtype=np.uint8)
cv2.imwrite(output_dir_sub + file, mask_out)
n += 1
print("processed {} images".format(n))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='processed_mask',
description='cut_large_mask')
parser.add_argument('-i', '--input', type=str, help='origin masks folder path')
parser.add_argument('-o', '--output', type=str, help='processed masks folder path')
args = parser.parse_args()
main(args.input, args.output)