Our4514
/
An-Interpretable-Short-term-Rainfall-Forecasting-Method-Based-On-Attention-Mechanism
Public
forked from GCSimba/An-Interpretable-Short-term-Rainfall-Forecasting-Method-Based-On-Attention-Mechanism
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcal_spi.py
184 lines (147 loc) · 5.9 KB
/
cal_spi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
try:
import Tkinter as tk
import tkMessageBox as message
import tkFileDialog as filedialog
import ttk
except:
import tkinter as tk
from tkinter import filedialog
from tkinter import ttk
from tkinter import messagebox as message
import pandas as pd
def autolabel(ax, xpos='center'):
"""
Attach a text label above each bar in *rects*, displaying its height.
*xpos* indicates which side to place the text w.r.t. the center of
the bar. It can be one of the following {'center', 'right', 'left'}.
"""
totals = []
# find the values and append to list
for i in ax.patches:
totals.append(i.get_width())
# set individual bar lables using above list
total = sum(totals)
# set individual bar lables using above list
# for i in ax.patches:
# # get_width pulls left or right; get_y pushes up or down
# ax.text(i.get_width()+.3, i.get_y()+.1, \
# str(round((i.get_width()/total)*100, 2))+'%\n n= '+str(total), fontsize=7,color='dimgrey')
## xpos = xpos.lower() # normalize the case of the parameter
## ha = {'center': 'center', 'right': 'left', 'left': 'right'}
## offset = {'center': 0.5, 'right': 0.57, 'left': 0.43} # x_txt = x + w*off
##
## for rect in rects:
## height = rect.get_height()
## ax.text(rect.get_x() + rect.get_width()*offset[xpos], 1.01*height,
## '{}'.format(height), ha=ha[xpos], va='bottom')
SPIclasses=pd.DataFrame(data=['SPI ≤ -2', '-2 < SPI ≤ -1.5', '-1.5 < SPI ≤ -1', '-1 < SPI ≤ 1',
'1 < SPI ≤ 1.5', '1.5 < SPI ≤ 2', 'SPI ≥ 2'],
index=['Extremely dry', 'Severely dry', 'Moderately dry', 'Near normal',
'Moderately wet', 'Severely wet', 'Extremely wet'],
columns=["Class"])
def reclass (spi):
if spi <= -2:
return "Extremely dry";
elif -2 < spi <=-1.5:
return "Severely dry";
elif -1.5 < spi <=-1:
return "Moderately dry";
elif -1 < spi <= 1:
return "Near normal"
elif 1 < spi <= 1.5:
return "Moderately wet"
elif 1.5 < spi <= 2:
return "Severely wet"
elif spi >= 2:
return "Extremely wet"
class SPIgraph(tk.Frame):
def __init__(self, parent,dataframe=None):#, controller):
tk.Frame.__init__(self, parent)
self.note = ttk.Notebook(parent)
self.tab1 = ttk.Frame(self.note)
self.tab2 = ttk.Frame(self.note)
self.tab3= ttk.Frame(self.note)
self.df=dataframe
self.parent = parent
self.parent.title("SPI Plot")
self.style = ttk.Style()
self.style.theme_use("default")
self.pack(fill=tk.BOTH, expand=2)
self.intial()
def intial(self):
self.note.add(self.tab1, text = "SPI graph")#,image=scheduledimage, compound=TOP)
label = tk.Label(self.tab1, text="Graph Page!")
label.grid(row=1)#,pady=3,padx=3)
exit_btn=tk.Button(self.tab1,text='Go back to main page',command=self.close,
activebackground='grey',activeforeground='#AB78F1',
bg='#58F0AB',highlightcolor='red',padx='10px',pady='3px')
exit_btn.grid(row=2, column=2)
num=int("%i11"%len(self.df.columns))
i=0
for col in self.df.columns:
spi_pos=self.df[col].clip(lower=0).to_frame(col)
spi_neg=self.df[col].clip(upper=0).to_frame(col)
i+=1
self.frame=ttk.Frame(self.tab1)
self.frame.grid(row=2,sticky=tk.W+tk.E)
f=[]
for col in self.df.columns:
tab=ttk.Frame(self.note )
f.append(tab)
self.note.add(tab, text=col)
df2=self.df[col].to_frame(col)
df2.dropna(inplace=True)
#print (df2.head())
import statsmodels.api as sm
decomposition = sm.tsa.seasonal_decompose(df2, model='additive')
self.frame=ttk.Frame(tab)
self.frame.grid(row=2,sticky=tk.W+tk.E)
self.tab2=ttk.Frame(self.note )
self.note.add(self.tab2, text="Frequency")
num=int("%i11"%len(self.df.columns))
i=0
for col in self.df.columns:
SPI=self.df[col].to_frame(col)
print (SPI[col])
SPI['spi'] = SPI[col]
#SPI.dropna(inplace=True)
#print('567890',SPI.head())
#SPI["Class"]=SPI[col].apply(reclass)
#SPIgroup=SPI.groupby(by="Class")
#count=SPIgroup.count()
#d=SPIclasses.join(count)
#print(d.head())
i+=1
self.frame1=ttk.Frame(self.tab2)
self.frame1.grid(row=2,sticky=tk.W+tk.E)
self.note.pack()
def close(self):
self.parent.destroy()
if __name__ == "__main__":
import pandas as pd
from fits import dateparse
#df=pd.DataFrame(data=[2,3,4,5],columns=["x"])
file="data/GONBADEG.csv"
#file="data/rain_GONBADEG.csv"
#file="data/clearn_train_spi1.csv"
#file="data/11.csv"
df=pd.read_csv(file,index_col=0,
date_parser=dateparse,parse_dates=True)
#df=pd.read_csv(file,sep=',',
# date_parser=dateparse,parse_dates=True)
print (df)
root = tk.Tk()
root.resizable(width=tk.FALSE, height=tk.FALSE)
print (root)
app = SPIgraph(root,df)
root.mainloop()
label="SPI1"
SPI=df[label]
SPI=SPI.to_frame(label)
SPI.dropna(inplace=True)
SPI["Class"]=SPI[label].apply(reclass)
SPIgroup=SPI.groupby(by="Class")
count=SPIgroup.count()
d=SPIclasses.join(count)
for i in SPI.values:
print (i)