-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevalTool.py
115 lines (95 loc) · 3.57 KB
/
evalTool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import json
import math
import numpy as np
def eval_unalign_batch1(model, loader):
"""
batch_size must be 1
return:
predictList: (N, Px)
lossList: (N, )
"""
predictList = [] # (N, Px)
lossList = []
# model.clear_confusion()
for data in loader:
loss, out = model.test(data, if_eval=True)
lossList.append(loss.item())
predictList.append(out.tolist())
return predictList, lossList
def eval_align_batchN(model, loader, P=256):
"""
return:
predictList: (N, P) e.g. (N, 256)
lossList: (B, )
"""
predictList = [] # sample_num x point_num(256)
lossList = []
# model.clear_confusion()
for data in loader:
loss, out = model.test(data, if_eval=True)
lossList.append(loss.item())
predictList.extend(out.reshape(-1, P).tolist())
return predictList, lossList
def get_eval_result(test_data, predict):
for i, data in enumerate(test_data):
predict_result = predict[i]
sketch = data['drawing']
for stroke in sketch:
label_num = len(stroke[2])
stroke[2] = predict_result[:label_num]
predict_result = predict_result[label_num:]
return test_data
def eval_without_len(testData, predict):
p_metric_list = []
c_metric_list = []
for i, data in enumerate(testData):
predict_result = predict[i] # 256
p_right = 0
p_sum = len(predict_result)
sketch = data['drawing']
c_right = 0
c_sum = len(sketch)
for j, stroke in enumerate(sketch):
stroke_label_true = stroke[2]
stroke_label_predict = np.array(predict_result[:len(stroke_label_true)])
predict_result = np.array(predict_result[len(stroke_label_true):])
p_right += np.sum(stroke_label_predict==stroke_label_true)
if np.average(stroke_label_predict==stroke_label_true) > 0.75:
c_right += 1
p_metric_list.append(p_right / p_sum)
c_metric_list.append(c_right / c_sum)
return p_metric_list, c_metric_list
def eval_with_len(testData, predict):
p_metric_list = []
c_metric_list = []
for i, data in enumerate(testData):
predict_result = predict[i] # 256
p_right = 0
p_sum = 0
sketch = data['drawing']
c_right = 0
c_sum = 0
# c_sum = len(sketch)
for stroke in sketch:
if stroke[2][0] == -1:
continue
c_sum += 1
stroke_len = [1]
for j in range(1, len(stroke[0])):
stroke_len.append(int(math.sqrt(pow(stroke[0][j]-stroke[0][j-1],2) +
pow(stroke[1][j]-stroke[1][j-1],2))))
stroke_len = np.array(stroke_len)
stroke_p_sum = np.sum(stroke_len)
p_sum += stroke_p_sum
stroke_label_true = stroke[2]
stroke_label_predict = np.array(predict_result[:len(stroke_label_true)])
predict_result = np.array(predict_result[len(stroke_label_true):])
right_index = np.array(stroke_label_predict==stroke_label_true, dtype=np.int)
stroke_p_right = np.sum(right_index*stroke_len)
p_right += stroke_p_right
if stroke_p_right / stroke_p_sum > 0.75:
c_right += 1
p_metric_list.append(p_right / p_sum)
c_metric_list.append(c_right / c_sum)
return p_metric_list, c_metric_list