-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathindicators.py
654 lines (466 loc) · 19.3 KB
/
indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# QTPyLib: Quantitative Trading Python Library
# https://github.com/ranaroussi/qtpylib
#
# Copyright 2016-2018 Ran Aroussi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import warnings
import sys
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
from pandas.core.base import PandasObject
# =============================================
# check min, python version
if sys.version_info < (3, 4):
raise SystemError("QTPyLib requires Python version >= 3.4")
# =============================================
warnings.simplefilter(action="ignore", category=RuntimeWarning)
# =============================================
def numpy_rolling_window(data, window):
shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
strides = data.strides + (data.strides[-1],)
return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
def numpy_rolling_series(func):
def func_wrapper(data, window, as_source=False):
series = data.values if isinstance(data, pd.Series) else data
new_series = np.empty(len(series)) * np.nan
calculated = func(series, window)
new_series[-len(calculated):] = calculated
if as_source and isinstance(data, pd.Series):
return pd.Series(index=data.index, data=new_series)
return new_series
return func_wrapper
@numpy_rolling_series
def numpy_rolling_mean(data, window, as_source=False):
return np.mean(numpy_rolling_window(data, window), axis=-1)
@numpy_rolling_series
def numpy_rolling_std(data, window, as_source=False):
return np.std(numpy_rolling_window(data, window), axis=-1, ddof=1)
# ---------------------------------------------
def session(df, start='17:00', end='16:00'):
""" remove previous globex day from df """
if df.empty:
return df
# get start/end/now as decimals
int_start = list(map(int, start.split(':')))
int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001
int_end = list(map(int, end.split(':')))
int_end = int_end[0] + int_end[1] / 100
int_now = (df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100)
# same-dat session?
is_same_day = int_end > int_start
# set pointers
curr = prev = df[-1:].index[0].strftime('%Y-%m-%d')
# globex/forex session
if not is_same_day:
prev = (datetime.strptime(curr, '%Y-%m-%d') -
timedelta(1)).strftime('%Y-%m-%d')
# slice
if int_now >= int_start:
df = df[df.index >= curr + ' ' + start]
else:
df = df[df.index >= prev + ' ' + start]
return df.copy()
# ---------------------------------------------
def heikinashi(bars):
bars = bars.copy()
bars['ha_close'] = (bars['open'] + bars['high'] +
bars['low'] + bars['close']) / 4
# ha open
bars.at[0, 'ha_open'] = (bars.at[0, 'open'] + bars.at[0, 'close']) / 2
for i in range(1, len(bars)):
bars.at[i, 'ha_open'] = (bars.at[i - 1, 'ha_open'] + bars.at[i - 1, 'ha_close']) / 2
bars['ha_high'] = bars.loc[:, ['high', 'ha_open', 'ha_close']].max(axis=1)
bars['ha_low'] = bars.loc[:, ['low', 'ha_open', 'ha_close']].min(axis=1)
return pd.DataFrame(index=bars.index,
data={'open': bars['ha_open'],
'high': bars['ha_high'],
'low': bars['ha_low'],
'close': bars['ha_close']})
# ---------------------------------------------
def tdi(series, rsi_lookback=13, rsi_smooth_len=2,
rsi_signal_len=7, bb_lookback=34, bb_std=1.6185):
rsi_data = rsi(series, rsi_lookback)
rsi_smooth = sma(rsi_data, rsi_smooth_len)
rsi_signal = sma(rsi_data, rsi_signal_len)
bb_series = bollinger_bands(rsi_data, bb_lookback, bb_std)
return pd.DataFrame(index=series.index, data={
"rsi": rsi_data,
"rsi_signal": rsi_signal,
"rsi_smooth": rsi_smooth,
"rsi_bb_upper": bb_series['upper'],
"rsi_bb_lower": bb_series['lower'],
"rsi_bb_mid": bb_series['mid']
})
# ---------------------------------------------
def awesome_oscillator(df, weighted=False, fast=5, slow=34):
midprice = (df['high'] + df['low']) / 2
if weighted:
ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values
else:
ao = numpy_rolling_mean(midprice, fast) - \
numpy_rolling_mean(midprice, slow)
return pd.Series(index=df.index, data=ao)
# ---------------------------------------------
def nans(length=1):
mtx = np.empty(length)
mtx[:] = np.nan
return mtx
# ---------------------------------------------
def typical_price(bars):
res = (bars['high'] + bars['low'] + bars['close']) / 3.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def mid_price(bars):
res = (bars['high'] + bars['low']) / 2.
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def ibs(bars):
""" Internal bar strength """
res = np.round((bars['close'] - bars['low']) /
(bars['high'] - bars['low']), 2)
return pd.Series(index=bars.index, data=res)
# ---------------------------------------------
def true_range(bars):
return pd.DataFrame({
"hl": bars['high'] - bars['low'],
"hc": abs(bars['high'] - bars['close'].shift(1)),
"lc": abs(bars['low'] - bars['close'].shift(1))
}).max(axis=1)
# ---------------------------------------------
def atr(bars, window=14, exp=False):
tr = true_range(bars)
if exp:
res = rolling_weighted_mean(tr, window)
else:
res = rolling_mean(tr, window)
return pd.Series(res)
# ---------------------------------------------
def crossed(series1, series2, direction=None):
if isinstance(series1, np.ndarray):
series1 = pd.Series(series1)
if isinstance(series2, (float, int, np.ndarray)):
series2 = pd.Series(index=series1.index, data=series2)
if direction is None or direction == "above":
above = pd.Series((series1 > series2) & (
series1.shift(1) <= series2.shift(1)))
if direction is None or direction == "below":
below = pd.Series((series1 < series2) & (
series1.shift(1) >= series2.shift(1)))
if direction is None:
return above or below
return above if direction == "above" else below
def crossed_above(series1, series2):
return crossed(series1, series2, "above")
def crossed_below(series1, series2):
return crossed(series1, series2, "below")
# ---------------------------------------------
def rolling_std(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
if min_periods == window and len(series) > window:
return numpy_rolling_std(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).std()
except Exception as e:
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
# ---------------------------------------------
def rolling_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
if min_periods == window and len(series) > window:
return numpy_rolling_mean(series, window, True)
else:
try:
return series.rolling(window=window, min_periods=min_periods).mean()
except Exception as e:
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
# ---------------------------------------------
def rolling_min(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.rolling(window=window, min_periods=min_periods).min()
except Exception as e:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
# ---------------------------------------------
def rolling_max(series, window=14, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.rolling(window=window, min_periods=min_periods).min()
except Exception as e:
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
# ---------------------------------------------
def rolling_weighted_mean(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
try:
return series.ewm(span=window, min_periods=min_periods).mean()
except Exception as e:
return pd.ewma(series, span=window, min_periods=min_periods)
# ---------------------------------------------
def hull_moving_average(series, window=200, min_periods=None):
min_periods = window if min_periods is None else min_periods
ma = (2 * rolling_weighted_mean(series, window / 2, min_periods)) - \
rolling_weighted_mean(series, window, min_periods)
return rolling_weighted_mean(ma, np.sqrt(window), min_periods)
# ---------------------------------------------
def sma(series, window=200, min_periods=None):
return rolling_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def wma(series, window=200, min_periods=None):
return rolling_weighted_mean(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def hma(series, window=200, min_periods=None):
return hull_moving_average(series, window=window, min_periods=min_periods)
# ---------------------------------------------
def vwap(bars):
"""
calculate vwap of entire time series
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values
volume = bars['volume'].values
return pd.Series(index=bars.index,
data=np.cumsum(volume * typical) / np.cumsum(volume))
# ---------------------------------------------
def rolling_vwap(bars, window=200, min_periods=None):
"""
calculate vwap using moving window
(input can be pandas series or numpy array)
bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
"""
min_periods = window if min_periods is None else min_periods
typical = ((bars['high'] + bars['low'] + bars['close']) / 3)
volume = bars['volume']
left = (volume * typical).rolling(window=window,
min_periods=min_periods).sum()
right = volume.rolling(window=window, min_periods=min_periods).sum()
return pd.Series(index=bars.index, data=(left / right)).replace([np.inf, -np.inf], float('NaN')).ffill()
# ---------------------------------------------
def rsi(series, window=14):
"""
compute the n period relative strength indicator
"""
# 100-(100/relative_strength)
deltas = np.diff(series)
seed = deltas[:window + 1]
# default values
ups = seed[seed > 0].sum() / window
downs = -seed[seed < 0].sum() / window
rsival = np.zeros_like(series)
rsival[:window] = 100. - 100. / (1. + ups / downs)
# period values
for i in range(window, len(series)):
delta = deltas[i - 1]
if delta > 0:
upval = delta
downval = 0
else:
upval = 0
downval = -delta
ups = (ups * (window - 1) + upval) / window
downs = (downs * (window - 1.) + downval) / window
rsival[i] = 100. - 100. / (1. + ups / downs)
# return rsival
return pd.Series(index=series.index, data=rsival)
# ---------------------------------------------
def macd(series, fast=3, slow=10, smooth=16):
"""
compute the MACD (Moving Average Convergence/Divergence)
using a fast and slow exponential moving avg'
return value is emaslow, emafast, macd which are len(x) arrays
"""
macd_line = rolling_weighted_mean(series, window=fast) - \
rolling_weighted_mean(series, window=slow)
signal = rolling_weighted_mean(macd_line, window=smooth)
histogram = macd_line - signal
# return macd_line, signal, histogram
return pd.DataFrame(index=series.index, data={
'macd': macd_line.values,
'signal': signal.values,
'histogram': histogram.values
})
# ---------------------------------------------
def bollinger_bands(series, window=20, stds=2):
ma = rolling_mean(series, window=window, min_periods=1)
std = rolling_std(series, window=window, min_periods=1)
upper = ma + std * stds
lower = ma - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper,
'mid': ma,
'lower': lower
})
# ---------------------------------------------
def weighted_bollinger_bands(series, window=20, stds=2):
ema = rolling_weighted_mean(series, window=window)
std = rolling_std(series, window=window)
upper = ema + std * stds
lower = ema - std * stds
return pd.DataFrame(index=series.index, data={
'upper': upper.values,
'mid': ema.values,
'lower': lower.values
})
# ---------------------------------------------
def returns(series):
try:
res = (series / series.shift(1) -
1).replace([np.inf, -np.inf], float('NaN'))
except Exception as e:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def log_returns(series):
try:
res = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
except Exception as e:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def implied_volatility(series, window=252):
try:
logret = np.log(series / series.shift(1)
).replace([np.inf, -np.inf], float('NaN'))
res = numpy_rolling_std(logret, window) * np.sqrt(window)
except Exception as e:
res = nans(len(series))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def keltner_channel(bars, window=14, atrs=2):
typical_mean = rolling_mean(typical_price(bars), window)
atrval = atr(bars, window) * atrs
upper = typical_mean + atrval
lower = typical_mean - atrval
return pd.DataFrame(index=bars.index, data={
'upper': upper.values,
'mid': typical_mean.values,
'lower': lower.values
})
# ---------------------------------------------
def roc(series, window=14):
"""
compute rate of change
"""
res = (series - series.shift(window)) / series.shift(window)
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def cci(series, window=14):
"""
compute commodity channel index
"""
price = typical_price(series)
typical_mean = rolling_mean(price, window)
res = (price - typical_mean) / (.015 * np.std(typical_mean))
return pd.Series(index=series.index, data=res)
# ---------------------------------------------
def stoch(df, window=14, d=3, k=3, fast=False):
"""
compute the n period relative strength indicator
http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
"""
my_df = pd.DataFrame(index=df.index)
my_df['rolling_max'] = df['high'].rolling(window).max()
my_df['rolling_min'] = df['low'].rolling(window).min()
my_df['fast_k'] = 100 * (df['close'] - my_df['rolling_min'])/(my_df['rolling_max'] - my_df['rolling_min'])
my_df['fast_d'] = my_df['fast_k'].rolling(d).mean()
if fast:
return my_df.loc[:, ['fast_k', 'fast_d']]
my_df['slow_k'] = my_df['fast_k'].rolling(k).mean()
my_df['slow_d'] = my_df['slow_k'].rolling(d).mean()
return my_df.loc[:, ['slow_k', 'slow_d']]
# ---------------------------------------------
def zlma(series, window=20, min_periods=None, kind="ema"):
"""
John Ehlers' Zero lag (exponential) moving average
https://en.wikipedia.org/wiki/Zero_lag_exponential_moving_average
"""
min_periods = window if min_periods is None else min_periods
lag = (window - 1) // 2
series = 2 * series - series.shift(lag)
if kind in ['ewm', 'ema']:
return wma(series, lag, min_periods)
elif kind == "hma":
return hma(series, lag, min_periods)
return sma(series, lag, min_periods)
def zlema(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="ema")
def zlsma(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="sma")
def zlhma(series, window, min_periods=None):
return zlma(series, window, min_periods, kind="hma")
# ---------------------------------------------
def zscore(bars, window=20, stds=1, col='close'):
""" get zscore of price """
std = numpy_rolling_std(bars[col], window)
mean = numpy_rolling_mean(bars[col], window)
return (bars[col] - mean) / (std * stds)
# ---------------------------------------------
def pvt(bars):
""" Price Volume Trend """
trend = ((bars['close'] - bars['close'].shift(1)) /
bars['close'].shift(1)) * bars['volume']
return trend.cumsum()
def chopiness(bars, window=14):
atrsum = true_range(bars).rolling(window).sum()
highs = bars['high'].rolling(window).max()
lows = bars['low'].rolling(window).min()
return 100 * np.log10(atrsum / (highs - lows)) / np.log10(window)
# =============================================
PandasObject.session = session
PandasObject.atr = atr
PandasObject.bollinger_bands = bollinger_bands
PandasObject.cci = cci
PandasObject.crossed = crossed
PandasObject.crossed_above = crossed_above
PandasObject.crossed_below = crossed_below
PandasObject.heikinashi = heikinashi
PandasObject.hull_moving_average = hull_moving_average
PandasObject.ibs = ibs
PandasObject.implied_volatility = implied_volatility
PandasObject.keltner_channel = keltner_channel
PandasObject.log_returns = log_returns
PandasObject.macd = macd
PandasObject.returns = returns
PandasObject.roc = roc
PandasObject.rolling_max = rolling_max
PandasObject.rolling_min = rolling_min
PandasObject.rolling_mean = rolling_mean
PandasObject.rolling_std = rolling_std
PandasObject.rsi = rsi
PandasObject.stoch = stoch
PandasObject.zscore = zscore
PandasObject.pvt = pvt
PandasObject.chopiness = chopiness
PandasObject.tdi = tdi
PandasObject.true_range = true_range
PandasObject.mid_price = mid_price
PandasObject.typical_price = typical_price
PandasObject.vwap = vwap
PandasObject.rolling_vwap = rolling_vwap
PandasObject.weighted_bollinger_bands = weighted_bollinger_bands
PandasObject.rolling_weighted_mean = rolling_weighted_mean
PandasObject.sma = sma
PandasObject.wma = wma
PandasObject.ema = wma
PandasObject.hma = hma
PandasObject.zlsma = zlsma
PandasObject.zlwma = zlema
PandasObject.zlema = zlema
PandasObject.zlhma = zlhma
PandasObject.zlma = zlma