-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbert_token_classifier_test.py
117 lines (96 loc) · 4.99 KB
/
bert_token_classifier_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for BERT token classifier."""
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling import networks
from official.nlp.modeling.models import bert_token_classifier
# This decorator runs the test in V1, V2-Eager, and V2-Functional mode. It
# guarantees forward compatibility of this code for the V2 switchover.
@keras_parameterized.run_all_keras_modes
class BertTokenClassifierTest(keras_parameterized.TestCase):
@parameterized.parameters((True, True), (False, False))
def test_bert_trainer(self, dict_outputs, output_encoder_outputs):
"""Validate that the Keras object can be created."""
# Build a transformer network to use within the BERT trainer.
vocab_size = 100
sequence_length = 512
hidden_size = 768
test_network = networks.BertEncoder(
vocab_size=vocab_size,
num_layers=2,
max_sequence_length=sequence_length,
dict_outputs=dict_outputs,
hidden_size=hidden_size)
# Create a BERT trainer with the created network.
num_classes = 3
bert_trainer_model = bert_token_classifier.BertTokenClassifier(
test_network,
num_classes=num_classes,
output_encoder_outputs=output_encoder_outputs)
# Create a set of 2-dimensional inputs (the first dimension is implicit).
word_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
mask = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
type_ids = tf.keras.Input(shape=(sequence_length,), dtype=tf.int32)
# Invoke the trainer model on the inputs. This causes the layer to be built.
outputs = bert_trainer_model([word_ids, mask, type_ids])
if output_encoder_outputs:
logits = outputs['logits']
encoder_outputs = outputs['encoder_outputs']
self.assertAllEqual(encoder_outputs.shape.as_list(),
[None, sequence_length, hidden_size])
else:
logits = outputs['logits']
# Validate that the outputs are of the expected shape.
expected_classification_shape = [None, sequence_length, num_classes]
self.assertAllEqual(expected_classification_shape, logits.shape.as_list())
def test_bert_trainer_tensor_call(self):
"""Validate that the Keras object can be invoked."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# a short sequence_length for convenience.)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, max_sequence_length=2)
# Create a BERT trainer with the created network.
bert_trainer_model = bert_token_classifier.BertTokenClassifier(
test_network, num_classes=2)
# Create a set of 2-dimensional data tensors to feed into the model.
word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
# Invoke the trainer model on the tensors. In Eager mode, this does the
# actual calculation. (We can't validate the outputs, since the network is
# too complex: this simply ensures we're not hitting runtime errors.)
_ = bert_trainer_model([word_ids, mask, type_ids])
def test_serialize_deserialize(self):
"""Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use
# a short sequence_length for convenience.)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, max_sequence_length=5)
# Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.)
bert_trainer_model = bert_token_classifier.BertTokenClassifier(
test_network, num_classes=4, initializer='zeros', output='predictions')
# Create another BERT trainer via serialization and deserialization.
config = bert_trainer_model.get_config()
new_bert_trainer_model = (
bert_token_classifier.BertTokenClassifier.from_config(config))
# Validate that the config can be forced to JSON.
_ = new_bert_trainer_model.to_json()
# If the serialization was successful, the new config should match the old.
self.assertAllEqual(bert_trainer_model.get_config(),
new_bert_trainer_model.get_config())
if __name__ == '__main__':
tf.test.main()