forked from dvlab-research/PointGroup
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
214 lines (174 loc) · 9.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
'''
PointGroup test.py
Written by Li Jiang
'''
import torch
import time
import numpy as np
import random
import os
from util.config import cfg
cfg.task = 'test'
from util.log import logger
import util.utils as utils
import util.eval as eval
def init():
global result_dir
result_dir = os.path.join(cfg.exp_path, 'result', 'epoch{}_nmst{}_scoret{}_npointt{}'.format(cfg.test_epoch, cfg.TEST_NMS_THRESH, cfg.TEST_SCORE_THRESH, cfg.TEST_NPOINT_THRESH), cfg.split)
backup_dir = os.path.join(result_dir, 'backup_files')
os.makedirs(backup_dir, exist_ok=True)
os.makedirs(os.path.join(result_dir, 'predicted_masks'), exist_ok=True)
os.system('cp test.py {}'.format(backup_dir))
os.system('cp {} {}'.format(cfg.model_dir, backup_dir))
os.system('cp {} {}'.format(cfg.dataset_dir, backup_dir))
os.system('cp {} {}'.format(cfg.config, backup_dir))
global semantic_label_idx
semantic_label_idx = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]
logger.info(cfg)
random.seed(cfg.test_seed)
np.random.seed(cfg.test_seed)
torch.manual_seed(cfg.test_seed)
torch.cuda.manual_seed_all(cfg.test_seed)
def test(model, model_fn, data_name, epoch):
logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
if cfg.dataset == 'scannetv2':
if data_name == 'scannet':
from data.scannetv2_inst import Dataset
dataset = Dataset(test=True)
dataset.testLoader()
else:
print("Error: no data loader - " + data_name)
exit(0)
dataloader = dataset.test_data_loader
with torch.no_grad():
model = model.eval()
start = time.time()
matches = {}
for i, batch in enumerate(dataloader):
N = batch['feats'].shape[0]
test_scene_name = dataset.test_file_names[int(batch['id'][0])].split('/')[-1][:12]
start1 = time.time()
preds = model_fn(batch, model, epoch)
end1 = time.time() - start1
##### get predictions (#1 semantic_pred, pt_offsets; #2 scores, proposals_pred)
semantic_scores = preds['semantic'] # (N, nClass=20) float32, cuda
semantic_pred = semantic_scores.max(1)[1] # (N) long, cuda
pt_offsets = preds['pt_offsets'] # (N, 3), float32, cuda
if (epoch > cfg.prepare_epochs):
scores = preds['score'] # (nProposal, 1) float, cuda
scores_pred = torch.sigmoid(scores.view(-1))
proposals_idx, proposals_offset = preds['proposals']
# proposals_idx: (sumNPoint, 2), int, cpu, dim 0 for cluster_id, dim 1 for corresponding point idxs in N
# proposals_offset: (nProposal + 1), int, cpu
proposals_pred = torch.zeros((proposals_offset.shape[0] - 1, N), dtype=torch.int, device=scores_pred.device) # (nProposal, N), int, cuda
proposals_pred[proposals_idx[:, 0].long(), proposals_idx[:, 1].long()] = 1
semantic_id = torch.tensor(semantic_label_idx, device=scores_pred.device)[semantic_pred[proposals_idx[:, 1][proposals_offset[:-1].long()].long()]] # (nProposal), long
##### score threshold
score_mask = (scores_pred > cfg.TEST_SCORE_THRESH)
scores_pred = scores_pred[score_mask]
proposals_pred = proposals_pred[score_mask]
semantic_id = semantic_id[score_mask]
##### npoint threshold
proposals_pointnum = proposals_pred.sum(1)
npoint_mask = (proposals_pointnum > cfg.TEST_NPOINT_THRESH)
scores_pred = scores_pred[npoint_mask]
proposals_pred = proposals_pred[npoint_mask]
semantic_id = semantic_id[npoint_mask]
##### nms
if semantic_id.shape[0] == 0:
pick_idxs = np.empty(0)
else:
proposals_pred_f = proposals_pred.float() # (nProposal, N), float, cuda
intersection = torch.mm(proposals_pred_f, proposals_pred_f.t()) # (nProposal, nProposal), float, cuda
proposals_pointnum = proposals_pred_f.sum(1) # (nProposal), float, cuda
proposals_pn_h = proposals_pointnum.unsqueeze(-1).repeat(1, proposals_pointnum.shape[0])
proposals_pn_v = proposals_pointnum.unsqueeze(0).repeat(proposals_pointnum.shape[0], 1)
cross_ious = intersection / (proposals_pn_h + proposals_pn_v - intersection)
pick_idxs = non_max_suppression(cross_ious.cpu().numpy(), scores_pred.cpu().numpy(), cfg.TEST_NMS_THRESH) # int, (nCluster, N)
clusters = proposals_pred[pick_idxs]
cluster_scores = scores_pred[pick_idxs]
cluster_semantic_id = semantic_id[pick_idxs]
nclusters = clusters.shape[0]
##### prepare for evaluation
if cfg.eval:
pred_info = {}
pred_info['conf'] = cluster_scores.cpu().numpy()
pred_info['label_id'] = cluster_semantic_id.cpu().numpy()
pred_info['mask'] = clusters.cpu().numpy()
gt_file = os.path.join(cfg.data_root, cfg.dataset, cfg.split + '_gt', test_scene_name + '.txt')
gt2pred, pred2gt = eval.assign_instances_for_scan(test_scene_name, pred_info, gt_file)
matches[test_scene_name] = {}
matches[test_scene_name]['gt'] = gt2pred
matches[test_scene_name]['pred'] = pred2gt
##### save files
start3 = time.time()
if cfg.save_semantic:
os.makedirs(os.path.join(result_dir, 'semantic'), exist_ok=True)
semantic_np = semantic_pred.cpu().numpy()
np.save(os.path.join(result_dir, 'semantic', test_scene_name + '.npy'), semantic_np)
if cfg.save_pt_offsets:
os.makedirs(os.path.join(result_dir, 'coords_offsets'), exist_ok=True)
pt_offsets_np = pt_offsets.cpu().numpy()
coords_np = batch['locs_float'].numpy()
coords_offsets = np.concatenate((coords_np, pt_offsets_np), 1) # (N, 6)
np.save(os.path.join(result_dir, 'coords_offsets', test_scene_name + '.npy'), coords_offsets)
if(epoch > cfg.prepare_epochs and cfg.save_instance):
f = open(os.path.join(result_dir, test_scene_name + '.txt'), 'w')
for proposal_id in range(nclusters):
clusters_i = clusters[proposal_id].cpu().numpy() # (N)
semantic_label = np.argmax(np.bincount(semantic_pred[np.where(clusters_i == 1)[0]].cpu()))
score = cluster_scores[proposal_id]
f.write('predicted_masks/{}_{:03d}.txt {} {:.4f}'.format(test_scene_name, proposal_id, semantic_label_idx[semantic_label], score))
if proposal_id < nclusters - 1:
f.write('\n')
np.savetxt(os.path.join(result_dir, 'predicted_masks', test_scene_name + '_%03d.txt' % (proposal_id)), clusters_i, fmt='%d')
f.close()
end3 = time.time() - start3
end = time.time() - start
start = time.time()
##### print
logger.info("instance iter: {}/{} point_num: {} ncluster: {} time: total {:.2f}s inference {:.2f}s save {:.2f}s".format(batch['id'][0] + 1, len(dataset.test_files), N, nclusters, end, end1, end3))
##### evaluation
if cfg.eval:
ap_scores = eval.evaluate_matches(matches)
avgs = eval.compute_averages(ap_scores)
eval.print_results(avgs)
def non_max_suppression(ious, scores, threshold):
ixs = scores.argsort()[::-1]
pick = []
while len(ixs) > 0:
i = ixs[0]
pick.append(i)
iou = ious[i, ixs[1:]]
remove_ixs = np.where(iou > threshold)[0] + 1
ixs = np.delete(ixs, remove_ixs)
ixs = np.delete(ixs, 0)
return np.array(pick, dtype=np.int32)
if __name__ == '__main__':
init()
##### get model version and data version
exp_name = cfg.config.split('/')[-1][:-5]
model_name = exp_name.split('_')[0]
data_name = exp_name.split('_')[-1]
##### model
logger.info('=> creating model ...')
logger.info('Classes: {}'.format(cfg.classes))
if model_name == 'pointgroup':
from model.pointgroup.pointgroup import PointGroup as Network
from model.pointgroup.pointgroup import model_fn_decorator
else:
print("Error: no model version " + model_name)
exit(0)
model = Network(cfg)
use_cuda = torch.cuda.is_available()
logger.info('cuda available: {}'.format(use_cuda))
assert use_cuda
model = model.cuda()
# logger.info(model)
logger.info('#classifier parameters (model): {}'.format(sum([x.nelement() for x in model.parameters()])))
##### model_fn (criterion)
model_fn = model_fn_decorator(test=True)
##### load model
utils.checkpoint_restore(model, cfg.exp_path, cfg.config.split('/')[-1][:-5], use_cuda, cfg.test_epoch, dist=False, f=cfg.pretrain) # resume from the latest epoch, or specify the epoch to restore
##### evaluate
test(model, model_fn, data_name, cfg.test_epoch)