forked from qianguih/RSNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_data.py
144 lines (102 loc) · 4.22 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import numpy as np
import h5py
import glob
import math
import cv2
import random
import os
#-- slice processing utils
def gen_slice_idx(data, resolution, axis=2):
indices = np.zeros(( data.shape[0], data.shape[2] ))
for n in range(data.shape[0]):
indices[n] = gen_slice_idx_routine( data[n], resolution, axis )
#
return indices
def gen_slice_idx_routine(data, resolution, axis):
if axis == 2:
z_min, z_max = Z_MIN, Z_MAX
else:
z_min, z_max = data[:,:,axis].min(), data[:,:,axis].max()
#gap = (z_max - z_min + 0.001) / numSlices
gap = resolution
indices = np.ones( ( data.shape[1], 1 ) ) * float('inf')
for i in range( data.shape[1] ):
z = data[0,i,axis]
idx = int( (z - z_min) / gap )
indices[i, 0] = idx
return indices[:, 0]
#-- utils for loading data, from Pointnet
def load_h5(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
return (data, label)
def loadDataFile(filename):
return load_h5(filename)
#-- load data here
#- dataset setting, update when neccessay
block_size = 1.0
stride = 0.5
area = 'Area_5'
DATA_DIR = './data/'
TRAIN_DIR = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_{}_{}m_{}s_train/'.format(area, block_size, stride))
TEST_DIR = os.path.join(DATA_DIR, 'indoor3d_sem_seg_hdf5_data_{}_{}m_{}s_test/'.format( area, block_size, block_size ))
print("loading raw data...")
train_files = glob.glob(TRAIN_DIR + '*.h5')
test_files = glob.glob(TEST_DIR + '*.h5')
assert len(train_files) != 0, "dataset not processed correctly"
assert len(test_files) != 0, "dataset not processed correctly"
train_data, train_label = [], []
for filename in train_files:
data_batch, label_batch = loadDataFile(filename)
train_data.append(data_batch)
train_label.append(label_batch)
train_data = np.concatenate(train_data, 0)
train_label = np.concatenate(train_label, 0)
test_data, test_label = [], []
for filename in test_files:
data_batch, label_batch = loadDataFile(filename)
test_data.append(data_batch)
test_label.append(label_batch)
test_data = np.concatenate(test_data, 0)
test_label = np.concatenate(test_label, 0)
print "training set: ", (train_data.shape, train_label.shape)
print "testing set: ", (test_data.shape, test_label.shape)
Z_MIN, Z_MAX = min( train_data[:,:,2].min(), test_data[:,:,2].min() ), max( train_data[:,:,2].max(), test_data[:,:,2].max() )
def iterate_data(batchsize, resolution, train_flag = True, require_ori_data=False, block_size=1.0):
if train_flag:
data_all = train_data
label_all = train_label
indices = range(data_all.shape[0])
np.random.shuffle(indices)
else:
data_all = test_data
label_all = test_label
indices = range(data_all.shape[0])
file_size = data_all.shape[0]
num_batches = int(math.floor( file_size / float(batchsize) ))
for batch_idx in range(num_batches):
start_idx = batch_idx * batchsize
excerpt = indices[start_idx:start_idx + batchsize]
inputs = data_all[excerpt].astype('float32')
if require_ori_data:
ori_inputs = inputs.copy()
for b in range(inputs.shape[0]):
minx = min(inputs[b, :, 0])
miny = min(inputs[b, :, 1])
inputs[b, :, 0] -= (minx+block_size/2)
inputs[b, :, 1] -= (miny+block_size/2)
inputs = np.expand_dims(inputs,3).astype('float32')
inputs = inputs.transpose(0,3,1,2)
seg_target = label_all[excerpt].astype('int64') # num_batch, num_points
if len(resolution) == 1:
resolution_x = resolution_y = resolution_z = resolution
else:
resolution_x, resolution_y, resolution_z = resolution
x_slices_indices = gen_slice_idx(inputs, resolution_x, 0).astype('int32')
y_slices_indices = gen_slice_idx(inputs, resolution_y, 1).astype('int32')
z_slices_indices = gen_slice_idx(inputs, resolution_z, 2).astype('int32')
if not require_ori_data:
yield inputs, x_slices_indices, y_slices_indices, z_slices_indices, seg_target
else:
yield inputs, x_slices_indices, y_slices_indices, z_slices_indices, seg_target, ori_inputs