-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGetPrediction.py
71 lines (55 loc) · 2.31 KB
/
GetPrediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
from tensorflow.keras.preprocessing import image
import requests
# function which predicts the disease of a given image(URL) using the saved pre-trained model
def getPrediction(url):
img_url = url
# loading the pre-trained model
new_model = tf.keras.models.load_model('detection_model2')
# Check its architecture
# new_model.summary()
# getting the image URL and then convert it to a PIL image instance
img_data = requests.get(img_url).content
with open('input_image.jpg', 'wb') as handler:
handler.write(img_data)
# pre-processing the image to be predicted
test_image = image.load_img('input_image.jpg', target_size=(150, 150))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, 0)
test_image /= 255.
test_image = test_image.reshape(1, 150, 150, 3)
# getting the prediction of the image by sending it to the model
result = new_model.predict(test_image, batch_size=1)
# to get the index of the max result value out of 4 disease categories
index = np.argmax(result)
# to get the max result value out of 4 disease categories
value = np.amax(result)
# to get the prediction shape
# print("predictions shape:", result.shape)
# mapping the indexe with the disease ID
if(index == 0):
# disease category - Tomato Spider Mite Damage
output_result = "TddVuqg5EF83D0XsAGrXH5obFI"
elif (index == 1):
# disease category - Tomato Early Blight
output_result = "hFDZAhAHnRDCpREGIZkrFTLALj"
elif (index == 2):
# disease category - Tomato Late Blight
output_result = "ChTVgFRaBB5YCSCVGiFAjmBGST"
elif (index == 3):
# disease category - Tomato Leaf Mold
output_result = "lJwXpFFBDMpCoADABiASPOMlpB"
# creating a python dictionary to store results
d = dict()
d['predicted_result'] = output_result
d['value'] = value
# return the results dictionary
return d
# to test an image prediction
# when calling the API this part will not be executed
image_url = "https://firebasestorage.googleapis.com/v0/b/pelaguru-dev.appspot.com/o/uploadImages%2F11.jpg?alt=media&token=2cb6e9f4-e1f1-41cd-9abd-665bfe0b7b20"
result = getPrediction(image_url)
print(result)