forked from skaae/transformer_network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformerlayer.py
201 lines (163 loc) · 6.5 KB
/
transformerlayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import theano.tensor as T
import lasagne
class TransformerLayer(lasagne.layers.MergeLayer):
"""Spatial Transformer Layer
Implements a spatial transformer layer as described in [1]_.
Parameters
----------
incomings : a list of [:class:`Layer` instance or a tuple]
The layers feeding into this layer. The list must have two entries with
the first network being a convolutional net and the second layer
being the transformation matrices. The first network should have output
shape [num_batch, num_channels, height, width]. The output of the
second network should be [num_batch, 6].
downsample_fator : float
A value of 1 will keep the orignal size of the image.
Values larger than 1 will down sample the image. Values below 1 will
upsample the image.
example image: height= 100, width = 200
downsample_factor = 2
output image will then be 50, 100
References
----------
.. [1] Spatial Transformer Networks
Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu
Submitted on 5 Jun 2015
Notes
-----
To initialize the network to the identity transform init the
``localization_network`` to something similar to:
b = np.zeros((2, 3), dtype='float32')
b[0, 0] = 1
b[1, 1] = 1
b = b.flatten()
And W to zero.
W = lasagne.init.Constant(0.0)
Examples
--------
TODO
"""
def __init__(self, incoming, downsample_factor=1, **kwargs):
super(TransformerLayer, self).__init__(incoming, **kwargs)
self.downsample_factor = downsample_factor
conv_shp, A_shp = self.input_shapes
if conv_shp[0] != A_shp[0]:
raise ValueError("Number of batchs in conv_shp and A_shp must "
"be equal. Note that the input layers should "
"be [conv_input, A_input]")
if A_shp[-1] != 6:
raise ValueError("The A network must have 6 outputs")
def get_output_shape_for(self, input_shapes):
# input dims are bs, num_filters, height, width. Scale height and width
# by downsample factor
shp = input_shapes[0]
return list(shp[:2]) + [
int(s//self.downsample_factor) for s in shp[2:]]
def get_output_for(self, inputs, deterministic=False, **kwargs):
# theta should be shape (batchsize, 2, 3)
# see eq. (1) and sec 3.1 in ref [1]
conv_input, theta = inputs
output = _transform(theta, conv_input, self.downsample_factor)
return output
##########################
# TRANSFORMER LAYERS #
##########################
def _repeat(x, n_repeats):
rep = T.ones((n_repeats,), dtype='int32').dimshuffle('x', 0)
x = T.dot(x.reshape((-1, 1)), rep)
return x.flatten()
def _interpolate(im, x, y, downsample_factor):
# constants
num_batch, height, width, channels = im.shape
height_f = T.cast(height, 'float32')
width_f = T.cast(width, 'float32')
out_height = T.cast(height_f // downsample_factor, 'int64')
out_width = T.cast(width_f // downsample_factor, 'int64')
zero = T.zeros([], dtype='int64')
max_y = T.cast(im.shape[1] - 1, 'int64')
max_x = T.cast(im.shape[2] - 1, 'int64')
# scale indices from [-1, 1] to [0, width/height]
x = (x + 1.0)*(width_f) / 2.0
y = (y + 1.0)*(height_f) / 2.0
# do sampling
x0 = T.cast(T.floor(x), 'int64')
x1 = x0 + 1
y0 = T.cast(T.floor(y), 'int64')
y1 = y0 + 1
x0 = T.clip(x0, zero, max_x)
x1 = T.clip(x1, zero, max_x)
y0 = T.clip(y0, zero, max_y)
y1 = T.clip(y1, zero, max_y)
dim2 = width
dim1 = width*height
base = _repeat(
T.arange(num_batch, dtype='int32')*dim1, out_height*out_width)
base_y0 = base + y0*dim2
base_y1 = base + y1*dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore channels dim
im_flat = im.reshape((-1, channels))
Ia = im_flat[idx_a]
Ib = im_flat[idx_b]
Ic = im_flat[idx_c]
Id = im_flat[idx_d]
# and finanly calculate interpolated values
x0_f = T.cast(x0, 'float32')
x1_f = T.cast(x1, 'float32')
y0_f = T.cast(y0, 'float32')
y1_f = T.cast(y1, 'float32')
wa = ((x1_f-x) * (y1_f-y)).dimshuffle(0, 'x')
wb = ((x1_f-x) * (y-y0_f)).dimshuffle(0, 'x')
wc = ((x-x0_f) * (y1_f-y)).dimshuffle(0, 'x')
wd = ((x-x0_f) * (y-y0_f)).dimshuffle(0, 'x')
output = T.sum([wa*Ia, wb*Ib, wc*Ic, wd*Id], axis=0)
return output
def _linspace(start, stop, num):
# produces results identical to:
# np.linspace(start, stop, num)
start = T.cast(start, 'float32')
stop = T.cast(stop, 'float32')
num = T.cast(num, 'float32')
step = (stop-start)/(num-1)
return T.arange(num, dtype='float32')*step+start
def _meshgrid(height, width):
# This should be equivalent to:
# x_t, y_t = np.meshgrid(np.linspace(-1, 1, width),
# np.linspace(-1, 1, height))
# ones = np.ones(np.prod(x_t.shape))
# grid = np.vstack([x_t.flatten(), y_t.flatten(), ones])
x_t = T.dot(T.ones((height, 1)),
_linspace(-1.0, 1.0, width).dimshuffle('x', 0))
y_t = T.dot(_linspace(-1.0, 1.0, height).dimshuffle(0, 'x'),
T.ones((1, width)))
x_t_flat = x_t.reshape((1, -1))
y_t_flat = y_t.reshape((1, -1))
ones = T.ones_like(x_t_flat)
grid = T.concatenate([x_t_flat, y_t_flat, ones], axis=0)
return grid
def _transform(theta, input, downsample_factor):
num_batch, num_channels, height, width = input.shape
theta = T.reshape(theta, (-1, 2, 3))
# grid of (x_t, y_t, 1), eq (1) in ref [1]
height_f = T.cast(height, 'float32')
width_f = T.cast(width, 'float32')
out_height = T.cast(height_f // downsample_factor, 'int64')
out_width = T.cast(width_f // downsample_factor, 'int64')
grid = _meshgrid(out_height, out_width)
# Transform A x (x_t, y_t, 1)^T -> (x_s, y_s)
T_g = T.dot(theta, grid)
x_s, y_s = T_g[:, 0], T_g[:, 1]
x_s_flat = x_s.flatten()
y_s_flat = y_s.flatten()
# dimshuffle input to (bs, height, width, channels)
input_dim = input.dimshuffle(0, 2, 3, 1)
input_transformed = _interpolate(
input_dim, x_s_flat, y_s_flat,
downsample_factor)
output = T.reshape(input_transformed,
(num_batch, out_height, out_width, num_channels))
output = output.dimshuffle(0, 3, 1, 2)
return output