Skip to content

Latest commit

 

History

History
111 lines (84 loc) · 3.32 KB

README.md

File metadata and controls

111 lines (84 loc) · 3.32 KB

picoLLM Inference Engine Python Demos

Made in Vancouver, Canada by Picovoice

picoLLM Inference Engine

picoLLM Inference Engine is a highly accurate and cross-platform SDK optimized for running compressed large language models. picoLLM Inference Engine is:

  • Accurate; picoLLM Compression improves GPTQ by significant margins
  • Private; LLM inference runs 100% locally.
  • Cross-Platform
  • Runs on CPU and GPU
  • Free for open-weight models

Compatibility

  • Python 3.8+
  • Runs on Linux (x86_64), macOS (arm64, x86_64), Windows (x86_64, arm64), and Raspberry Pi (5 and 4).

Installation

pip3 install picollmdemo

Models

picoLLM Inference Engine supports the following open-weight models. The models are on Picovoice Console.

  • Gemma
    • gemma-2b
    • gemma-2b-it
    • gemma-7b
    • gemma-7b-it
  • Llama-2
    • llama-2-7b
    • llama-2-7b-chat
    • llama-2-13b
    • llama-2-13b-chat
    • llama-2-70b
    • llama-2-70b-chat
  • Llama-3
    • llama-3-8b
    • llama-3-8b-instruct
    • llama-3-70b
    • llama-3-70b-instruct
  • Llama-3.2
    • llama3.2-1b-instruct
    • llama3.2-3b-instruct
  • Mistral
    • mistral-7b-v0.1
    • mistral-7b-instruct-v0.1
    • mistral-7b-instruct-v0.2
  • Mixtral
    • mixtral-8x7b-v0.1
    • mixtral-8x7b-instruct-v0.1
  • Phi-2
    • phi2
  • Phi-3
    • phi3

AccessKey

AccessKey is your authentication and authorization token for deploying Picovoice SDKs, including picoLLM. Anyone who is using Picovoice needs to have a valid AccessKey. You must keep your AccessKey secret. You would need internet connectivity to validate your AccessKey with Picovoice license servers even though the LLM inference is running 100% offline and completely free for open-weight models. Everyone who signs up for Picovoice Console receives a unique AccessKey.

Usage

There are two demos available: completion and chat. The completion demo accepts a prompt and a set of optional parameters and generates a single completion. It can run all models, whether instruction-tuned or not. The chat demo can run instruction-tuned (chat) models such as llama-3-8b-instruct, phi2, etc. The chat demo enables a back-and-forth conversation with the LLM, similar to ChatGPT.

Completion Demo

Run the demo by entering the following in the terminal:

picollm_demo_completion --access_key ${ACCESS_KEY} --model_path ${MODEL_PATH} --prompt ${PROMPT}

Replace ${ACCESS_KEY} with yours obtained from Picovoice Console, ${MODEL_PATH} with the path to a model file downloaded from Picovoice Console, and ${PROMPT} with a prompt string.

To get information about all the available options in the demo, run the following:

picollm_demo_completion --help

Chat Demo

To run an instruction-tuned model for chat, run the following in the terminal:

picollm_demo_chat --access_key ${ACCESS_KEY} --model_path ${MODEL_PATH}

Replace ${ACCESS_KEY} with yours obtained from Picovoice Console and ${MODEL_PATH} with the path to a model file downloaded from Picovoice Console.

To get information about all the available options in the demo, run the following:

picollm_demo_chat --help