forked from simbuerg/isl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisl_affine_hull.c
1424 lines (1247 loc) · 37.9 KB
/
isl_affine_hull.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
* Copyright 2012 Ecole Normale Superieure
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, K.U.Leuven, Departement
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_seq.h>
#include <isl/set.h>
#include <isl/lp.h>
#include <isl/map.h>
#include "isl_equalities.h"
#include "isl_sample.h"
#include "isl_tab.h"
#include <isl_mat_private.h>
#include <isl_vec_private.h>
struct isl_basic_map *isl_basic_map_implicit_equalities(
struct isl_basic_map *bmap)
{
struct isl_tab *tab;
if (!bmap)
return bmap;
bmap = isl_basic_map_gauss(bmap, NULL);
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
return bmap;
if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
return bmap;
if (bmap->n_ineq <= 1)
return bmap;
tab = isl_tab_from_basic_map(bmap, 0);
if (isl_tab_detect_implicit_equalities(tab) < 0)
goto error;
bmap = isl_basic_map_update_from_tab(bmap, tab);
isl_tab_free(tab);
bmap = isl_basic_map_gauss(bmap, NULL);
ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
return bmap;
error:
isl_tab_free(tab);
isl_basic_map_free(bmap);
return NULL;
}
struct isl_basic_set *isl_basic_set_implicit_equalities(
struct isl_basic_set *bset)
{
return (struct isl_basic_set *)
isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
}
struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
{
int i;
if (!map)
return map;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
if (!map->p[i])
goto error;
}
return map;
error:
isl_map_free(map);
return NULL;
}
/* Make eq[row][col] of both bmaps equal so we can add the row
* add the column to the common matrix.
* Note that because of the echelon form, the columns of row row
* after column col are zero.
*/
static void set_common_multiple(
struct isl_basic_set *bset1, struct isl_basic_set *bset2,
unsigned row, unsigned col)
{
isl_int m, c;
if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
return;
isl_int_init(c);
isl_int_init(m);
isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
isl_int_divexact(c, m, bset1->eq[row][col]);
isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
isl_int_divexact(c, m, bset2->eq[row][col]);
isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
isl_int_clear(c);
isl_int_clear(m);
}
/* Delete a given equality, moving all the following equalities one up.
*/
static void delete_row(struct isl_basic_set *bset, unsigned row)
{
isl_int *t;
int r;
t = bset->eq[row];
bset->n_eq--;
for (r = row; r < bset->n_eq; ++r)
bset->eq[r] = bset->eq[r+1];
bset->eq[bset->n_eq] = t;
}
/* Make first row entries in column col of bset1 identical to
* those of bset2, using the fact that entry bset1->eq[row][col]=a
* is non-zero. Initially, these elements of bset1 are all zero.
* For each row i < row, we set
* A[i] = a * A[i] + B[i][col] * A[row]
* B[i] = a * B[i]
* so that
* A[i][col] = B[i][col] = a * old(B[i][col])
*/
static void construct_column(
struct isl_basic_set *bset1, struct isl_basic_set *bset2,
unsigned row, unsigned col)
{
int r;
isl_int a;
isl_int b;
unsigned total;
isl_int_init(a);
isl_int_init(b);
total = 1 + isl_basic_set_n_dim(bset1);
for (r = 0; r < row; ++r) {
if (isl_int_is_zero(bset2->eq[r][col]))
continue;
isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
isl_int_divexact(a, bset1->eq[row][col], b);
isl_int_divexact(b, bset2->eq[r][col], b);
isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
b, bset1->eq[row], total);
isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
}
isl_int_clear(a);
isl_int_clear(b);
delete_row(bset1, row);
}
/* Make first row entries in column col of bset1 identical to
* those of bset2, using only these entries of the two matrices.
* Let t be the last row with different entries.
* For each row i < t, we set
* A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
* B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
* so that
* A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
*/
static int transform_column(
struct isl_basic_set *bset1, struct isl_basic_set *bset2,
unsigned row, unsigned col)
{
int i, t;
isl_int a, b, g;
unsigned total;
for (t = row-1; t >= 0; --t)
if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
break;
if (t < 0)
return 0;
total = 1 + isl_basic_set_n_dim(bset1);
isl_int_init(a);
isl_int_init(b);
isl_int_init(g);
isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
for (i = 0; i < t; ++i) {
isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
isl_int_gcd(g, a, b);
isl_int_divexact(a, a, g);
isl_int_divexact(g, b, g);
isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
total);
isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
total);
}
isl_int_clear(a);
isl_int_clear(b);
isl_int_clear(g);
delete_row(bset1, t);
delete_row(bset2, t);
return 1;
}
/* The implementation is based on Section 5.2 of Michael Karr,
* "Affine Relationships Among Variables of a Program",
* except that the echelon form we use starts from the last column
* and that we are dealing with integer coefficients.
*/
static struct isl_basic_set *affine_hull(
struct isl_basic_set *bset1, struct isl_basic_set *bset2)
{
unsigned total;
int col;
int row;
if (!bset1 || !bset2)
goto error;
total = 1 + isl_basic_set_n_dim(bset1);
row = 0;
for (col = total-1; col >= 0; --col) {
int is_zero1 = row >= bset1->n_eq ||
isl_int_is_zero(bset1->eq[row][col]);
int is_zero2 = row >= bset2->n_eq ||
isl_int_is_zero(bset2->eq[row][col]);
if (!is_zero1 && !is_zero2) {
set_common_multiple(bset1, bset2, row, col);
++row;
} else if (!is_zero1 && is_zero2) {
construct_column(bset1, bset2, row, col);
} else if (is_zero1 && !is_zero2) {
construct_column(bset2, bset1, row, col);
} else {
if (transform_column(bset1, bset2, row, col))
--row;
}
}
isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
isl_basic_set_free(bset2);
bset1 = isl_basic_set_normalize_constraints(bset1);
return bset1;
error:
isl_basic_set_free(bset1);
isl_basic_set_free(bset2);
return NULL;
}
/* Find an integer point in the set represented by "tab"
* that lies outside of the equality "eq" e(x) = 0.
* If "up" is true, look for a point satisfying e(x) - 1 >= 0.
* Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
* The point, if found, is returned.
* If no point can be found, a zero-length vector is returned.
*
* Before solving an ILP problem, we first check if simply
* adding the normal of the constraint to one of the known
* integer points in the basic set represented by "tab"
* yields another point inside the basic set.
*
* The caller of this function ensures that the tableau is bounded or
* that tab->basis and tab->n_unbounded have been set appropriately.
*/
static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
{
struct isl_ctx *ctx;
struct isl_vec *sample = NULL;
struct isl_tab_undo *snap;
unsigned dim;
if (!tab)
return NULL;
ctx = tab->mat->ctx;
dim = tab->n_var;
sample = isl_vec_alloc(ctx, 1 + dim);
if (!sample)
return NULL;
isl_int_set_si(sample->el[0], 1);
isl_seq_combine(sample->el + 1,
ctx->one, tab->bmap->sample->el + 1,
up ? ctx->one : ctx->negone, eq + 1, dim);
if (isl_basic_map_contains(tab->bmap, sample))
return sample;
isl_vec_free(sample);
sample = NULL;
snap = isl_tab_snap(tab);
if (!up)
isl_seq_neg(eq, eq, 1 + dim);
isl_int_sub_ui(eq[0], eq[0], 1);
if (isl_tab_extend_cons(tab, 1) < 0)
goto error;
if (isl_tab_add_ineq(tab, eq) < 0)
goto error;
sample = isl_tab_sample(tab);
isl_int_add_ui(eq[0], eq[0], 1);
if (!up)
isl_seq_neg(eq, eq, 1 + dim);
if (sample && isl_tab_rollback(tab, snap) < 0)
goto error;
return sample;
error:
isl_vec_free(sample);
return NULL;
}
struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
{
int i;
bset = isl_basic_set_cow(bset);
if (!bset)
return NULL;
isl_assert(bset->ctx, bset->n_div == 0, goto error);
for (i = 0; i < bset->n_eq; ++i)
isl_int_set_si(bset->eq[i][0], 0);
for (i = 0; i < bset->n_ineq; ++i)
isl_int_set_si(bset->ineq[i][0], 0);
ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
return isl_basic_set_implicit_equalities(bset);
error:
isl_basic_set_free(bset);
return NULL;
}
__isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
{
int i;
if (!set)
return NULL;
if (set->n == 0)
return set;
set = isl_set_remove_divs(set);
set = isl_set_cow(set);
if (!set)
return NULL;
for (i = 0; i < set->n; ++i) {
set->p[i] = isl_basic_set_recession_cone(set->p[i]);
if (!set->p[i])
goto error;
}
return set;
error:
isl_set_free(set);
return NULL;
}
/* Move "sample" to a point that is one up (or down) from the original
* point in dimension "pos".
*/
static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
{
if (up)
isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
else
isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
}
/* Check if any points that are adjacent to "sample" also belong to "bset".
* If so, add them to "hull" and return the updated hull.
*
* Before checking whether and adjacent point belongs to "bset", we first
* check whether it already belongs to "hull" as this test is typically
* much cheaper.
*/
static __isl_give isl_basic_set *add_adjacent_points(
__isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
__isl_keep isl_basic_set *bset)
{
int i, up;
int dim;
if (!sample)
goto error;
dim = isl_basic_set_dim(hull, isl_dim_set);
for (i = 0; i < dim; ++i) {
for (up = 0; up <= 1; ++up) {
int contains;
isl_basic_set *point;
adjacent_point(sample, i, up);
contains = isl_basic_set_contains(hull, sample);
if (contains < 0)
goto error;
if (contains) {
adjacent_point(sample, i, !up);
continue;
}
contains = isl_basic_set_contains(bset, sample);
if (contains < 0)
goto error;
if (contains) {
point = isl_basic_set_from_vec(
isl_vec_copy(sample));
hull = affine_hull(hull, point);
}
adjacent_point(sample, i, !up);
if (contains)
break;
}
}
isl_vec_free(sample);
return hull;
error:
isl_vec_free(sample);
isl_basic_set_free(hull);
return NULL;
}
/* Extend an initial (under-)approximation of the affine hull of basic
* set represented by the tableau "tab"
* by looking for points that do not satisfy one of the equalities
* in the current approximation and adding them to that approximation
* until no such points can be found any more.
*
* The caller of this function ensures that "tab" is bounded or
* that tab->basis and tab->n_unbounded have been set appropriately.
*
* "bset" may be either NULL or the basic set represented by "tab".
* If "bset" is not NULL, we check for any point we find if any
* of its adjacent points also belong to "bset".
*/
static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
__isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
{
int i, j;
unsigned dim;
if (!tab || !hull)
goto error;
dim = tab->n_var;
if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
goto error;
for (i = 0; i < dim; ++i) {
struct isl_vec *sample;
struct isl_basic_set *point;
for (j = 0; j < hull->n_eq; ++j) {
sample = outside_point(tab, hull->eq[j], 1);
if (!sample)
goto error;
if (sample->size > 0)
break;
isl_vec_free(sample);
sample = outside_point(tab, hull->eq[j], 0);
if (!sample)
goto error;
if (sample->size > 0)
break;
isl_vec_free(sample);
if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
goto error;
}
if (j == hull->n_eq)
break;
if (tab->samples &&
isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0)
hull = isl_basic_set_free(hull);
if (bset)
hull = add_adjacent_points(hull, isl_vec_copy(sample),
bset);
point = isl_basic_set_from_vec(sample);
hull = affine_hull(hull, point);
if (!hull)
return NULL;
}
return hull;
error:
isl_basic_set_free(hull);
return NULL;
}
/* Drop all constraints in bmap that involve any of the dimensions
* first to first+n-1.
*/
static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving(
__isl_take isl_basic_map *bmap, unsigned first, unsigned n)
{
int i;
if (n == 0)
return bmap;
bmap = isl_basic_map_cow(bmap);
if (!bmap)
return NULL;
for (i = bmap->n_eq - 1; i >= 0; --i) {
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1)
continue;
isl_basic_map_drop_equality(bmap, i);
}
for (i = bmap->n_ineq - 1; i >= 0; --i) {
if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1)
continue;
isl_basic_map_drop_inequality(bmap, i);
}
bmap = isl_basic_map_add_known_div_constraints(bmap);
return bmap;
}
/* Drop all constraints in bset that involve any of the dimensions
* first to first+n-1.
*/
__isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
__isl_take isl_basic_set *bset, unsigned first, unsigned n)
{
return isl_basic_map_drop_constraints_involving(bset, first, n);
}
/* Drop all constraints in bmap that do not involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
unsigned dim;
if (n == 0) {
isl_space *space = isl_basic_map_get_space(bmap);
isl_basic_map_free(bmap);
return isl_basic_map_universe(space);
}
bmap = isl_basic_map_cow(bmap);
if (!bmap)
return NULL;
dim = isl_basic_map_dim(bmap, type);
if (first + n > dim || first + n < first)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
"index out of bounds", return isl_basic_map_free(bmap));
first += isl_basic_map_offset(bmap, type) - 1;
for (i = bmap->n_eq - 1; i >= 0; --i) {
if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1)
continue;
isl_basic_map_drop_equality(bmap, i);
}
for (i = bmap->n_ineq - 1; i >= 0; --i) {
if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1)
continue;
isl_basic_map_drop_inequality(bmap, i);
}
bmap = isl_basic_map_add_known_div_constraints(bmap);
return bmap;
}
/* Drop all constraints in bset that do not involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return isl_basic_map_drop_constraints_not_involving_dims(bset,
type, first, n);
}
/* Drop all constraints in bmap that involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims(
__isl_take isl_basic_map *bmap,
enum isl_dim_type type, unsigned first, unsigned n)
{
unsigned dim;
if (!bmap)
return NULL;
if (n == 0)
return bmap;
dim = isl_basic_map_dim(bmap, type);
if (first + n > dim || first + n < first)
isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid,
"index out of bounds", return isl_basic_map_free(bmap));
bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n);
first += isl_basic_map_offset(bmap, type) - 1;
return isl_basic_map_drop_constraints_involving(bmap, first, n);
}
/* Drop all constraints in bset that involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims(
__isl_take isl_basic_set *bset,
enum isl_dim_type type, unsigned first, unsigned n)
{
return isl_basic_map_drop_constraints_involving_dims(bset,
type, first, n);
}
/* Drop all constraints in map that involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_map *isl_map_drop_constraints_involving_dims(
__isl_take isl_map *map,
enum isl_dim_type type, unsigned first, unsigned n)
{
int i;
unsigned dim;
if (!map)
return NULL;
if (n == 0)
return map;
dim = isl_map_dim(map, type);
if (first + n > dim || first + n < first)
isl_die(isl_map_get_ctx(map), isl_error_invalid,
"index out of bounds", return isl_map_free(map));
map = isl_map_cow(map);
if (!map)
return NULL;
for (i = 0; i < map->n; ++i) {
map->p[i] = isl_basic_map_drop_constraints_involving_dims(
map->p[i], type, first, n);
if (!map->p[i])
return isl_map_free(map);
}
return map;
}
/* Drop all constraints in set that involve any of the dimensions
* first to first + n - 1 of the given type.
*/
__isl_give isl_set *isl_set_drop_constraints_involving_dims(
__isl_take isl_set *set,
enum isl_dim_type type, unsigned first, unsigned n)
{
return isl_map_drop_constraints_involving_dims(set, type, first, n);
}
/* Construct an initial underapproximatino of the hull of "bset"
* from "sample" and any of its adjacent points that also belong to "bset".
*/
static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
__isl_take isl_vec *sample)
{
isl_basic_set *hull;
hull = isl_basic_set_from_vec(isl_vec_copy(sample));
hull = add_adjacent_points(hull, sample, bset);
return hull;
}
/* Look for all equalities satisfied by the integer points in bset,
* which is assumed to be bounded.
*
* The equalities are obtained by successively looking for
* a point that is affinely independent of the points found so far.
* In particular, for each equality satisfied by the points so far,
* we check if there is any point on a hyperplane parallel to the
* corresponding hyperplane shifted by at least one (in either direction).
*/
static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
{
struct isl_vec *sample = NULL;
struct isl_basic_set *hull;
struct isl_tab *tab = NULL;
unsigned dim;
if (isl_basic_set_plain_is_empty(bset))
return bset;
dim = isl_basic_set_n_dim(bset);
if (bset->sample && bset->sample->size == 1 + dim) {
int contains = isl_basic_set_contains(bset, bset->sample);
if (contains < 0)
goto error;
if (contains) {
if (dim == 0)
return bset;
sample = isl_vec_copy(bset->sample);
} else {
isl_vec_free(bset->sample);
bset->sample = NULL;
}
}
tab = isl_tab_from_basic_set(bset, 1);
if (!tab)
goto error;
if (tab->empty) {
isl_tab_free(tab);
isl_vec_free(sample);
return isl_basic_set_set_to_empty(bset);
}
if (!sample) {
struct isl_tab_undo *snap;
snap = isl_tab_snap(tab);
sample = isl_tab_sample(tab);
if (isl_tab_rollback(tab, snap) < 0)
goto error;
isl_vec_free(tab->bmap->sample);
tab->bmap->sample = isl_vec_copy(sample);
}
if (!sample)
goto error;
if (sample->size == 0) {
isl_tab_free(tab);
isl_vec_free(sample);
return isl_basic_set_set_to_empty(bset);
}
hull = initialize_hull(bset, sample);
hull = extend_affine_hull(tab, hull, bset);
isl_basic_set_free(bset);
isl_tab_free(tab);
return hull;
error:
isl_vec_free(sample);
isl_tab_free(tab);
isl_basic_set_free(bset);
return NULL;
}
/* Given an unbounded tableau and an integer point satisfying the tableau,
* construct an initial affine hull containing the recession cone
* shifted to the given point.
*
* The unbounded directions are taken from the last rows of the basis,
* which is assumed to have been initialized appropriately.
*/
static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
__isl_take isl_vec *vec)
{
int i;
int k;
struct isl_basic_set *bset = NULL;
struct isl_ctx *ctx;
unsigned dim;
if (!vec || !tab)
return NULL;
ctx = vec->ctx;
isl_assert(ctx, vec->size != 0, goto error);
bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
if (!bset)
goto error;
dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
for (i = 0; i < dim; ++i) {
k = isl_basic_set_alloc_equality(bset);
if (k < 0)
goto error;
isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
vec->size - 1);
isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
vec->size - 1, &bset->eq[k][0]);
isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
}
bset->sample = vec;
bset = isl_basic_set_gauss(bset, NULL);
return bset;
error:
isl_basic_set_free(bset);
isl_vec_free(vec);
return NULL;
}
/* Given a tableau of a set and a tableau of the corresponding
* recession cone, detect and add all equalities to the tableau.
* If the tableau is bounded, then we can simply keep the
* tableau in its state after the return from extend_affine_hull.
* However, if the tableau is unbounded, then
* isl_tab_set_initial_basis_with_cone will add some additional
* constraints to the tableau that have to be removed again.
* In this case, we therefore rollback to the state before
* any constraints were added and then add the equalities back in.
*/
struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
struct isl_tab *tab_cone)
{
int j;
struct isl_vec *sample;
struct isl_basic_set *hull = NULL;
struct isl_tab_undo *snap;
if (!tab || !tab_cone)
goto error;
snap = isl_tab_snap(tab);
isl_mat_free(tab->basis);
tab->basis = NULL;
isl_assert(tab->mat->ctx, tab->bmap, goto error);
isl_assert(tab->mat->ctx, tab->samples, goto error);
isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
goto error;
sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
if (!sample)
goto error;
isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
isl_vec_free(tab->bmap->sample);
tab->bmap->sample = isl_vec_copy(sample);
if (tab->n_unbounded == 0)
hull = isl_basic_set_from_vec(isl_vec_copy(sample));
else
hull = initial_hull(tab, isl_vec_copy(sample));
for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
hull = affine_hull(hull,
isl_basic_set_from_vec(isl_vec_copy(sample)));
}
isl_vec_free(sample);
hull = extend_affine_hull(tab, hull, NULL);
if (!hull)
goto error;
if (tab->n_unbounded == 0) {
isl_basic_set_free(hull);
return tab;
}
if (isl_tab_rollback(tab, snap) < 0)
goto error;
if (hull->n_eq > tab->n_zero) {
for (j = 0; j < hull->n_eq; ++j) {
isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
goto error;
}
}
isl_basic_set_free(hull);
return tab;
error:
isl_basic_set_free(hull);
isl_tab_free(tab);
return NULL;
}
/* Compute the affine hull of "bset", where "cone" is the recession cone
* of "bset".
*
* We first compute a unimodular transformation that puts the unbounded
* directions in the last dimensions. In particular, we take a transformation
* that maps all equalities to equalities (in HNF) on the first dimensions.
* Let x be the original dimensions and y the transformed, with y_1 bounded
* and y_2 unbounded.
*
* [ y_1 ] [ y_1 ] [ Q_1 ]
* x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
*
* Let's call the input basic set S. We compute S' = preimage(S, U)
* and drop the final dimensions including any constraints involving them.
* This results in set S''.
* Then we compute the affine hull A'' of S''.
* Let F y_1 >= g be the constraint system of A''. In the transformed
* space the y_2 are unbounded, so we can add them back without any constraints,
* resulting in
*
* [ y_1 ]
* [ F 0 ] [ y_2 ] >= g
* or
* [ Q_1 ]
* [ F 0 ] [ Q_2 ] x >= g
* or
* F Q_1 x >= g
*
* The affine hull in the original space is then obtained as
* A = preimage(A'', Q_1).
*/
static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
struct isl_basic_set *cone)
{
unsigned total;
unsigned cone_dim;
struct isl_basic_set *hull;
struct isl_mat *M, *U, *Q;
if (!bset || !cone)
goto error;
total = isl_basic_set_total_dim(cone);
cone_dim = total - cone->n_eq;
M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
M = isl_mat_left_hermite(M, 0, &U, &Q);
if (!M)
goto error;
isl_mat_free(M);
U = isl_mat_lin_to_aff(U);
bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
cone_dim);
bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
Q = isl_mat_lin_to_aff(Q);
Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
if (bset && bset->sample && bset->sample->size == 1 + total)
bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
hull = uset_affine_hull_bounded(bset);
if (!hull) {
isl_mat_free(Q);
isl_mat_free(U);
} else {
struct isl_vec *sample = isl_vec_copy(hull->sample);
U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
if (sample && sample->size > 0)
sample = isl_mat_vec_product(U, sample);
else
isl_mat_free(U);
hull = isl_basic_set_preimage(hull, Q);
if (hull) {
isl_vec_free(hull->sample);
hull->sample = sample;
} else
isl_vec_free(sample);
}
isl_basic_set_free(cone);
return hull;
error:
isl_basic_set_free(bset);
isl_basic_set_free(cone);
return NULL;
}
/* Look for all equalities satisfied by the integer points in bset,
* which is assumed not to have any explicit equalities.
*
* The equalities are obtained by successively looking for
* a point that is affinely independent of the points found so far.
* In particular, for each equality satisfied by the points so far,
* we check if there is any point on a hyperplane parallel to the
* corresponding hyperplane shifted by at least one (in either direction).
*
* Before looking for any outside points, we first compute the recession
* cone. The directions of this recession cone will always be part
* of the affine hull, so there is no need for looking for any points
* in these directions.
* In particular, if the recession cone is full-dimensional, then
* the affine hull is simply the whole universe.
*/
static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
{
struct isl_basic_set *cone;