-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscikit_tt_auxiliary.py
83 lines (62 loc) · 2.66 KB
/
scikit_tt_auxiliary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import scikit_tt as scikit
from typing import List
from scikit_tt.data_driven.transform import Function
import numpy as np
def dudx(u, h):
# u.shape = (Nt, Nx)
Nx = u.shape[1]
if Nx<=5:
raise ValueError('Must have at least 6 spatial points.')
else:
ux = np.zeros_like(u)
ux[:,2:Nx-2] = (u[:,0:Nx-4] - 8*u[:,1:Nx-3] + 8*u[:,3:Nx-1] - u[:,4:Nx])/12/h
for i in [0, 1]:
ux[:,i] = (-25*u[:,i] + 48*u[:,i+1] - 36*u[:,i+2] + 16*u[:,i+3] - 3*u[:,i+4])/12/h
for i in [Nx-2, Nx-1]:
ux[:,i] = (-25*u[:,i] + 48*u[:,i-1] - 36*u[:,i-2] + 16*u[:,i-3] - 3*u[:,i-4])/12/h
return ux
def dudt(u, k):
Nt = u.shape[0]
ut = np.zeros_like(u)
ut[1:Nt-1,:] = (u[2:Nt,:]-u[0:Nt-2,:])/(2*k)
ut[0,:] = (-3.0/2*u[0,:] + 2*u[1,:]-u[2,:]/2)/k
ut[Nt-1,:] = (3.0/2*u[Nt-1,:] - 2*u[Nt-2,:] + u[Nt-3,:]/2)/k
return ut
def coordinate_major(x: np.ndarray, phi: List[Function]) -> 'TT':
m = x.shape[1] # number of snapshots
p = len(phi) # number of modes
d = x.shape[0] # number of dimensions
# define cores as list of empty arrays
cores = [np.zeros([1, p, 1, m])] + [np.zeros([m, p, 1, m]) for _ in range(1, d)]
# insert elements of first core
for j in range(m):
cores[0][0, :, 0, j] = np.array([phi[k](x[0, j]) for k in range(p)])
# insert elements of subsequent cores
for i in range(1, d):
for j in range(m):
cores[i][j, :, 0, j] = np.array([phi[k](x[i, j]) for k in range(p)])
# append core containing unit vectors
cores.append(np.eye(m).reshape(m, m, 1, 1))
# construct tensor train
psi = scikit.TT(cores)
return psi
def mandy_cm(x: np.ndarray, y: np.ndarray, phi: List[Function]=[lambda t: 1, lambda t: t], threshold: float=0.0):
x = x.T
y = y.T
d = x.shape[0]
m = x.shape[1]
# construct transformed data tensor
psi = coordinate_major(x, phi)
# define xi as pseudoinverse of psi
xi = psi.pinv(d, threshold=threshold, ortho_r=False)
# multiply last core with y
xi.cores[d] = (xi.cores[d].reshape([xi.ranks[d], m]).dot(y.transpose())).reshape(xi.ranks[d], 1, 1, 1)
# set new row dimension
xi.row_dims[d] = 1
return xi
def print_time(xi_exact):
start_time = scikit.progress('Construct exact solution in TT format', 0)
utl.progress('Construct exact solution in TT format', 100, cpu_time=_time.time() - start_time)
start_time = scikit.progress('Construct exact solution in matrix format', 0)
xi_exact_mat = xi_exact.full().reshape([np.prod(xi_exact.full().shape), 1])
utl.progress('Construct exact solution in matrix format', 100, cpu_time=_time.time() - start_time)