-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathandgan.py
429 lines (412 loc) · 19.2 KB
/
andgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from __future__ import print_function
import os
import matplotlib as mpl
import tarfile
import matplotlib.image as mpimg
from matplotlib import pyplot as plt
import mxnet as mx
from mxnet import gluon
from mxnet import ndarray as nd
from mxnet.gluon import nn, utils
from mxnet.gluon.nn import Dense, Activation, Conv2D, Conv2DTranspose, \
BatchNorm, LeakyReLU, Flatten, HybridSequential, HybridBlock, Dropout
from mxnet import autograd
import numpy as np
import random
from random import shuffle
import dataloaderiter as dload
import load_image
import visual
import models
from datetime import datetime
import time
import logging
import argparse
import options
def facc(label, pred):
pred = pred.ravel()
label = label.ravel()
return ((pred > 0.5) == label).mean()
def trainadnov(opt, train_data, val_data, ctx, networks):
netEn = networks[0]
netDe = networks[1]
netD = networks[2]
netD2 = networks[3]
netDS = networks[4]
trainerEn = networks[5]
trainerDe = networks [6]
trainerD =networks[7]
trainerD2 = networks[8]
trainerSD = networks[9]
cep = opt.continueEpochFrom
epochs = opt.epochs
lambda1 = opt.lambda1
batch_size = opt.batch_size
expname = opt.expname
append = opt.append
text_file = open(expname + "_trainloss.txt", "w")
text_file.close()
text_file = open(expname + "_validtest.txt", "w")
text_file.close()
GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
L1_loss = gluon.loss.L2Loss()
metric = mx.metric.CustomMetric(facc)
metricl = mx.metric.CustomMetric(facc)
metricStrong = mx.metric.CustomMetric(facc)
metric2 = mx.metric.MSE()
loss_rec_G2 =[]
acc2_rec = []
loss_rec_G = []
loss_rec_D = []
loss_rec_R = []
acc_rec = []
loss_rec_D2 = []
stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
logging.basicConfig(level=logging.DEBUG)
lr = 2.0 * batch_size
logging.basicConfig(level=logging.DEBUG)
if cep == -1:
cep = 0
else:
netEn.load_params('checkpoints/' + opt.expname + '_' + str(cep) + '_En.params', ctx=ctx)
netDe.load_params('checkpoints/' + opt.expname + '_' + str(cep) + '_De.params', ctx=ctx)
netD.load_params('checkpoints/' + opt.expname + '_' + str(cep) + '_D.params', ctx=ctx)
netD2.load_params('checkpoints/' + opt.expname + '_' + str(cep) + '_D2.params', ctx=ctx)
netDS.load_params('checkpoints/' + opt.expname + '_' + str(cep) + '_SD.params', ctx=ctx)
for epoch in range(cep + 1, epochs):
tic = time.time()
btic = time.time()
train_data.reset()
iter = 0
for batch in train_data:
############################
# (1) Update D network: maximize log(D(x, y)) + log(1 - D(x, G(x, z)))
###########################
real_in = batch.data[0].as_in_context(ctx)
real_out = batch.data[1].as_in_context(ctx)
fake_latent = netEn(real_in)
mu = nd.random.uniform( low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
real_latent = nd.random.uniform(low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
fake_out = netDe(fake_latent)
fake_concat = nd.concat(real_in, fake_out, dim=1) if append else fake_out
if epoch > 150: # negative mining
mu = nd.random.uniform(low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
mu.attach_grad()
for ep2 in range(1): # doing single gradient step
with autograd.record():
eps2 = nd.tanh(mu)
rec_output = netDS(netDe(eps2))
fake_label = nd.zeros(rec_output.shape, ctx=ctx)
errGS = GAN_loss(rec_output, fake_label)
errGS.backward()
mu -= lr / mu.shape[0] * mu.grad # Update mu with SGD
eps2 = nd.tanh(mu)
with autograd.record():
# Train with fake image
output = netD(fake_concat)
output2 = netD2(fake_latent)
fake_label = nd.zeros(output.shape, ctx=ctx)
fake_latent_label = nd.zeros(output2.shape, ctx=ctx)
eps = nd.random.uniform(low=-1, high=1, shape=fake_latent.shape, ctx=ctx)
rec_output = netD(netDe(eps))
errD_fake = GAN_loss(rec_output, fake_label)
errD_fake2 = GAN_loss(output, fake_label)
errD2_fake = GAN_loss(output2, fake_latent_label)
metric.update([fake_label, ], [rec_output, ])
metric2.update([fake_latent_label, ], [output2, ])
real_concat = nd.concat(real_in, real_out, dim=1) if append else real_out
output = netD(real_concat)
output2 = netD2(real_latent)
real_label = nd.ones(output.shape, ctx=ctx)
real_latent_label = nd.ones(output2.shape, ctx=ctx)
errD_real = GAN_loss(output, real_label)
errD2_real = GAN_loss(output2, real_latent_label)
errD = (errD_real + errD_fake) * 0.5
errD2 = (errD2_real + errD2_fake) * 0.5
totalerrD = errD + errD2
totalerrD.backward()
metric.update([real_label, ], [output, ])
metric2.update([real_latent_label, ], [output2, ])
trainerD.step(batch.data[0].shape[0])
trainerD2.step(batch.data[0].shape[0])
with autograd.record():
# Train classifier
strong_output = netDS(netDe(eps))
strong_real = netDS(fake_concat)
errs1 = GAN_loss(strong_output, fake_label)
errs2 = GAN_loss(strong_real, real_label)
metricStrong.update([fake_label, ], [strong_output, ])
metricStrong.update([real_label, ], [strong_real, ])
strongerr = 0.5 * (errs1 + errs2)
strongerr.backward()
trainerSD.step(batch.data[0].shape[0])
############################
# (2) Update G network: maximize log(D(x, G(x, z))) - lambda1 * L1(y, G(x, z))
###########################
with autograd.record():
rec_output = netD(netDe(eps2))
fake_latent = (netEn(real_in))
output2 = netD2(fake_latent)
fake_out = netDe(fake_latent)
fake_concat = nd.concat(real_in, fake_out, dim=1) if append else fake_out
output = netD(fake_concat)
real_label = nd.ones(output.shape, ctx=ctx)
real_latent_label = nd.ones(output2.shape, ctx=ctx)
errG2 = GAN_loss(rec_output, real_label)
errR = L1_loss(real_out, fake_out) * lambda1
errG = 10.0 * GAN_loss(output2, real_latent_label) + errG2 + errR
errG.backward()
trainerDe.step(batch.data[0].shape[0])
trainerEn.step(batch.data[0].shape[0])
loss_rec_G2.append(nd.mean(errG2).asscalar())
loss_rec_G.append(nd.mean(nd.mean(errG)).asscalar() - nd.mean(errG2).asscalar() - nd.mean(errR).asscalar())
loss_rec_D.append(nd.mean(errD).asscalar())
loss_rec_R.append(nd.mean(errR).asscalar())
loss_rec_D2.append(nd.mean(errD2).asscalar())
_, acc2 = metric2.get()
name, acc = metric.get()
acc_rec.append(acc)
acc2_rec.append(acc2)
# Print log infomation every ten batches
if iter % 10 == 0:
_, acc2 = metric2.get()
name, acc = metric.get()
_, accStrong = metricStrong.get()
logging.info('speed: {} samples/s'.format(batch_size / (time.time() - btic)))
logging.info(
'discriminator loss = %f, D2 loss = %f, generator loss = %f, G2 loss = %f, SD loss = %f, D acc = %f , D2 acc = %f, DS acc = %f, reconstruction error= %f at iter %d epoch %d'
% (nd.mean(errD).asscalar(), nd.mean(errD2).asscalar(),
nd.mean(errG - errG2 - errR).asscalar(), nd.mean(errG2).asscalar(), nd.mean(strongerr).asscalar(), acc, acc2,
accStrong, nd.mean(errR).asscalar(), iter, epoch))
iter = iter + 1
btic = time.time()
name, acc = metric.get()
_, acc2 = metric2.get()
metric.reset()
metric2.reset()
train_data.reset()
metricStrong.reset()
logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
logging.info('time: %f' % (time.time() - tic))
if epoch % 5 == 0:
filename = "checkpoints/" + expname + "_" + str(epoch) + "_D.params"
netD.save_params(filename)
filename = "checkpoints/" + expname + "_" + str(epoch) + "_D2.params"
netD2.save_params(filename)
filename = "checkpoints/" + expname + "_" + str(epoch) + "_En.params"
netEn.save_params(filename)
filename = "checkpoints/" + expname + "_" + str(epoch) + "_De.params"
netDe.save_params(filename)
filename = "checkpoints/" + expname + "_" + str(epoch) + "_SD.params"
netDS.save_params(filename)
val_data.reset()
text_file = open(expname + "_validtest.txt", "a")
for vbatch in val_data:
real_in = vbatch.data[0].as_in_context(ctx)
real_out = vbatch.data[1].as_in_context(ctx)
fake_latent = netEn(real_in)
y = netDe(fake_latent)
fake_out = y
metricMSE.update([fake_out, ], [real_out, ])
_, acc2 = metricMSE.get()
text_file.write("%s %s %s %s\n" % (str(epoch), nd.mean(errR).asscalar(), str(acc2), str(accStrong)))
metricMSE.reset()
return [loss_rec_D, loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2, loss_rec_G2, acc2_rec]
def trainAE(opt, train_data, val_data, ctx, networks):
netEn = networks[0]
netDe = networks[1]
trainerEn = networks[5]
trainerDe = networks[6]
epochs = opt.epochs
batch_size = opt.batch_size
expname = opt.expname
text_file = open(expname + "_trainloss.txt", "w")
text_file.close()
text_file = open(expname + "_validtest.txt", "w")
text_file.close()
L1_loss = gluon.loss.L2Loss()
metric2 = mx.metric.MSE()
loss_rec_G = []
loss_rec_D = []
loss_rec_R = []
acc_rec = []
loss_rec_D2 = []
stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
logging.basicConfig(level=logging.DEBUG)
for epoch in range(epochs):
tic = time.time()
btic = time.time()
train_data.reset()
iter = 0
for batch in train_data:
real_in = batch.data[0].as_in_context(ctx)
real_out = batch.data[1].as_in_context(ctx)
with autograd.record():
fake_out = netDe(netEn(real_in))
errR = L1_loss(real_out, fake_out)
errR.backward()
trainerDe.step(batch.data[0].shape[0])
trainerEn.step(batch.data[0].shape[0])
loss_rec_R.append(nd.mean(errR).asscalar())
if iter % 10 == 0:
logging.info('speed: {} samples/s'.format(batch_size / (time.time() - btic)))
logging.info('reconstruction error= %f at iter %d epoch %d'
% (nd.mean(errR).asscalar(), iter, epoch))
iter = iter + 1
btic = time.time()
text_tl = open(expname + "_trainloss.txt", "a")
text_tl.write('%f %f %f %f %f %f %f ' % (0, 0, 0, 0, 0, nd.mean(errR).asscalar(), epoch))
text_file.close()
train_data.reset()
if epoch%10 ==0:
filename = "checkpoints/"+expname+"_"+str(epoch)+"_En.params"
netEn.save_params(filename)
filename = "checkpoints/"+expname+"_"+str(epoch)+"_De.params"
netDe.save_params(filename)
fake_img1 = nd.concat(real_in[0],real_out[0], fake_out[0], dim=1)
fake_img2 = nd.concat(real_in[1],real_out[1], fake_out[1], dim=1)
fake_img3 = nd.concat(real_in[2],real_out[2], fake_out[2], dim=1)
val_data.reset()
text_file = open(expname + "_validtest.txt", "a")
for vbatch in val_data:
real_in = vbatch.data[0].as_in_context(ctx)
real_out = vbatch.data[1].as_in_context(ctx)
fake_out = netDe(netEn(real_in))
metric2.update([fake_out, ], [real_out, ])
_, acc2 = metric2.get()
text_file.write("%s %s %s\n" % (str(epoch), nd.mean(errR).asscalar(), str(acc2)))
metric2.reset()
fake_img1T = nd.concat(real_in[0],real_out[0], fake_out[0], dim=1)
fake_img2T = nd.concat(real_in[1],real_out[1], fake_out[1], dim=1)
fake_img3T = nd.concat(real_in[2],real_out[2], fake_out[2], dim=1)
fake_img = nd.concat(fake_img1, fake_img2, fake_img3, fake_img1T, fake_img2T, fake_img3T, dim=2)
visual.visualize(fake_img)
plt.savefig('outputs/'+expname+'_'+str(epoch)+'.png')
text_file.close()
return([loss_rec_D,loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2])
def traincvpr18(opt, train_data, val_data, ctx, networks):
netEn = networks[0]
netDe = networks[1]
netD = networks[2]
trainerEn = networks[5]
trainerDe = networks [6]
trainerD =networks[7]
epochs = opt.epochs
lambda1 = opt.lambda1
batch_size = opt.batch_size
expname = opt.expname
append = opt.append
text_file = open(expname + "_trainloss.txt", "w")
text_file.close()
text_file = open(expname + "_validtest.txt", "w")
text_file.close()
GAN_loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
L1_loss = gluon.loss.L2Loss()
metric = mx.metric.CustomMetric(facc)
metricl = mx.metric.CustomMetric(facc)
metric2 = mx.metric.MSE()
loss_rec_G2 =[]
loss_rec_G = []
loss_rec_D = []
loss_rec_R = []
acc_rec = []
loss_rec_D2 = []
stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
logging.basicConfig(level=logging.DEBUG)
for epoch in range(epochs):
tic = time.time()
btic = time.time()
train_data.reset()
iter = 0
for batch in train_data:
############################
# (1) Update D network: maximize log(D(x, y)) + log(1 - D(x, G(x, z)))
###########################
real_in = batch.data[0].as_in_context(ctx)
real_out = batch.data[1].as_in_context(ctx)
fake_latent = netEn(real_in)
fake_out = netDe(fake_latent)
fake_concat = nd.concat(real_in, fake_out, dim=1) if append else fake_out
with autograd.record():
# Train with fake image
# Use image pooling to utilize history imagesi
output = netD(fake_concat)
fake_label = nd.zeros(output.shape, ctx=ctx)
errD_fake = GAN_loss(output, fake_label)
metric.update([fake_label, ], [output, ])
real_concat = nd.concat(real_in, real_out, dim=1) if append else real_out
output = netD(real_concat)
real_label = nd.ones(output.shape, ctx=ctx)
errD_real = GAN_loss(output, real_label)
errD = (errD_real + errD_fake) * 0.5
errD.backward()
metric.update([real_label, ], [output, ])
trainerD.step(batch.data[0].shape[0])
############################
# (2) Update G network: maximize log(D(x, G(x, z))) - lambda1 * L1(y, G(x, z))
###########################
with autograd.record():
fake_latent = (netEn(real_in))
fake_out = netDe(fake_latent)
fake_concat = nd.concat(real_in, fake_out, dim=1) if append else fake_out
output = netD(fake_concat)
real_label = nd.ones(output.shape, ctx=ctx)
errG = GAN_loss(output, real_label) + L1_loss(real_out, fake_out) * lambda1
errR = L1_loss(real_out, fake_out)
errG.backward()
trainerDe.step(batch.data[0].shape[0])
trainerEn.step(batch.data[0].shape[0])
loss_rec_G.append(nd.mean(errG).asscalar()-nd.mean(errR).asscalar()*lambda1)
loss_rec_D.append(nd.mean(errD).asscalar())
loss_rec_R.append(nd.mean(errR).asscalar())
name, acc = metric.get()
acc_rec.append(acc)
# Print log infomation every ten batches
if iter % 10 == 0:
name, acc = metric.get()
logging.info('speed: {} samples/s'.format(batch_size / (time.time() - btic)))
logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f , reconstruction error= %f at iter %d epoch %d'
% (nd.mean(errD).asscalar(), nd.mean(errG).asscalar(), acc, nd.mean(errR).asscalar(), iter, epoch))
iter = iter + 1
btic = time.time()
name, acc = metric.get()
_, acc2 = metricl.get()
text_tl = open(expname + "_trainloss.txt", "a")
text_tl.write('%f %f %f %f %f %f %f ' % (nd.mean(errD).asscalar(), 0,
nd.mean(errG).asscalar(), acc, 0, nd.mean(errR).asscalar(), epoch))
text_file.close()
metricl.reset()
metric.reset()
train_data.reset()
logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
logging.info('time: %f' % (time.time() - tic))
if epoch%10 ==0:
filename = "checkpoints/"+expname+"_"+str(epoch)+"_D.params"
netD.save_params(filename)
filename = "checkpoints/"+expname+"_"+str(epoch)+"_En.params"
netEn.save_params(filename)
filename = "checkpoints/"+expname+"_"+str(epoch)+"_De.params"
netDe.save_params(filename)
fake_img1 = nd.concat(real_in[0], real_out[0], fake_out[0], dim=1)
fake_img2 = nd.concat(real_in[1], real_out[1], fake_out[1], dim=1)
fake_img3 = nd.concat(real_in[2], real_out[2], fake_out[2], dim=1)
val_data.reset()
text_file = open(expname + "_validtest.txt", "a")
for vbatch in val_data:
real_in = vbatch.data[0].as_in_context(ctx)
real_out = vbatch.data[1].as_in_context(ctx)
fake_latent= netEn(real_in)
y = netDe(fake_latent)
fake_out = y
metric2.update([fake_out, ], [real_out, ])
_, acc2 = metric2.get()
text_file.write("%s %s %s\n" % (str(epoch), nd.mean(errR).asscalar(), str(acc2)))
metric2.reset()
fake_img1T = nd.concat(real_in[0],real_out[0], fake_out[0], dim=1)
fake_img2T = nd.concat(real_in[1],real_out[1], fake_out[1], dim=1)
fake_img3T = nd.concat(real_in[2],real_out[2], fake_out[2], dim=1)
fake_img = nd.concat(fake_img1,fake_img2, fake_img3, fake_img1T, fake_img2T, fake_img3T, dim=2)
visual.visualize(fake_img)
plt.savefig('outputs/'+expname+'_'+str(epoch)+'.png')
text_file.close()
return [loss_rec_D,loss_rec_G, loss_rec_R, acc_rec, loss_rec_D2]