-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtrain_elmo_updated.py
74 lines (57 loc) · 1.9 KB
/
train_elmo_updated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import argparse
import numpy as np
from bilm.training import train, load_options_latest_checkpoint, load_vocab
from bilm.data import BidirectionalLMDataset
def main(args):
# load the vocab
vocab = load_vocab(args.vocab_file, 50)
restart_ckpt_file = args.restart_ckpt_file
# define the options
batch_size = 128 # batch size for each GPU
n_gpus = 3
# number of tokens in training data (this for 1B Word Benchmark)
n_train_tokens = 768648884
options = {
'bidirectional': True,
'char_cnn': {'activation': 'relu',
'embedding': {'dim': 16},
'filters': [[1, 32],
[2, 32],
[3, 64],
[4, 128],
[5, 256],
[6, 512],
[7, 1024]],
'max_characters_per_token': 50,
'n_characters': 261,
'n_highway': 2},
'dropout': 0.1,
'lstm': {
'cell_clip': 3,
'dim': 4096,
'n_layers': 2,
'proj_clip': 3,
'projection_dim': 512,
'use_skip_connections': True},
'all_clip_norm_val': 10.0,
'n_epochs': 10,
'n_train_tokens': n_train_tokens,
'batch_size': batch_size,
'n_tokens_vocab': vocab.size,
'unroll_steps': 20,
'n_negative_samples_batch': 8192,
}
prefix = args.train_prefix
data = BidirectionalLMDataset(prefix, vocab, test=False,
shuffle_on_load=True)
tf_save_dir = args.save_dir
tf_log_dir = args.save_dir
train(options, data, n_gpus, tf_save_dir, tf_log_dir,restart_ckpt_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--save_dir', help='Location of checkpoint files')
parser.add_argument('--vocab_file', help='Vocabulary file')
parser.add_argument('--train_prefix', help='Prefix for train files')
parser.add_argument('--restart_ckpt_file', help='latest checkpoint file to start with')
args = parser.parse_args()
main(args)