-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtfrecord.py
131 lines (120 loc) · 4.87 KB
/
tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Apr 4 20:39:22 2018
@author: wu
"""
import os
import tensorflow as tf
from PIL import Image
import numpy as np
import math
import matplotlib.pyplot as plt
path = '/home/wu/TF_Project/action/sample/'
ratio = 0.2
def get_files(file_dir, ratio):
class_train = []
label_train = []
k = 0
for train_class in os.listdir(file_dir):
for sub_train in os.listdir(file_dir+train_class):
for image in os.listdir(file_dir+train_class+'/'+sub_train) :
class_train.append(file_dir+train_class+'/'+sub_train+'/'+image)
label_train.append(k)
k+=1
temp = np.array([class_train,label_train])
temp = temp.transpose()
#shuffle the samples
np.random.shuffle(temp)
#after transpose, images is in dimension 0 and label in dimension 1
all_image_list = list(temp[:,0])
all_label_list = list(temp[:,1])
n_sample = len(all_label_list)
n_val = int(math.ceil(n_sample*ratio)) #测试样本数
n_train = n_sample - n_val # 训练样本数
tra_images = all_image_list[0:n_train]
tra_labels = all_label_list[0:n_train]
tra_labels = [int(float(i)) for i in tra_labels]
val_images = all_image_list[n_train:-1]
val_labels = all_label_list[n_train:-1]
val_labels = [int(float(i)) for i in val_labels]
return tra_images,tra_labels,val_images,val_labels
#制作二进制数据
def create_record():
writer_train = tf.python_io.TFRecordWriter('/home/wu/TF_Project/action/sample_TFrecord/train1.tfrecords')
writer_val = tf.python_io.TFRecordWriter('/home/wu/TF_Project/action/sample_TFrecord/val1.tfrecords')
tra_images,tra_labels,val_images,val_labels = get_files(path, ratio)
for index, name in enumerate(tra_images):
img = Image.open(name)
img = img.resize((100, 100))
img_raw = img.tobytes()
example_train = tf.train.Example(
features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[tra_labels[index]])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer_train.write(example_train.SerializeToString())
for index, name in enumerate(val_images):
img = Image.open(name)
img = img.resize((100, 100))
img_raw = img.tobytes()
example_val = tf.train.Example(
features=tf.train.Features(feature={
"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[val_labels[index]])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
}))
writer_val.write(example_val.SerializeToString())
writer_train.close()
writer_val.close()
#data = create_record()
def read_and_decode(filename):
# 创建文件队列,不限读取的数量
filename_queue = tf.train.string_input_producer([filename])
# create a reader from file queue
reader = tf.TFRecordReader()
# reader从文件队列中读入一个序列化的样本
_, serialized_example = reader.read(filename_queue)
# get feature from serialized example
# 解析符号化的样本
features = tf.parse_single_example(
serialized_example,
features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string)
}
)
label = features['label']
img = features['img_raw']
img = tf.decode_raw(img, tf.uint8)
img = tf.reshape(img, [100, 100, 3])
img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
img = tf.cast(img, tf.float32)
label = tf.cast(label, tf.int32)
return img, label
if __name__ == '__main__':
if 1:
data = create_record()
else:
train_filename = '/home/wu/TF_Project/action/sample_TFrecord/train1.tfrecords'
img, label = read_and_decode(train_filename)
#print(img,label)
filename_queue = tf.train.string_input_producer([train_filename],num_epochs=None)
img_batch, label_batch = tf.train.shuffle_batch([img, label],
batch_size=40, capacity=2000,
min_after_dequeue=1000)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord,sess=sess)
try:
for i in range(1):
example, l = sess.run([img_batch, label_batch])
plt.imshow(example[0,:,:,:])
#print(example, l)
except tf.errors.OutOfRangeError:
print('Done reading')
finally:
coord.request_stop()
coord.request_stop()
coord.join(threads)