-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLTSINT_vot.py
680 lines (491 loc) · 29.4 KB
/
LTSINT_vot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
# --------------------------------------------------------
# Copyright (c) 2018 University of Amsterdam
# Written by Ran Tao
# --------------------------------------------------------
import sys
import os
import numpy as np
import math
from PIL import Image, ImageOps, ImageDraw
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models, transforms
from torch.autograd import Variable
from utils import im_processing, tracking_utils
import lrn
sys.path.insert(0, '/home/rtao1/Projects/vot2018/vot-toolkit-master/tracker/examples/python')
import vot
class Net(nn.Module):
def __init__(self, template_size):
super(Net, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, 3, 1, 1)
self.conv1_2 = nn.Conv2d(64, 64, 3, 1, 1)
self.conv2_1 = nn.Conv2d(64, 128, 3, 1, 1)
self.conv2_2 = nn.Conv2d(128, 128, 3, 1, 1)
self.conv3_1 = nn.Conv2d(128, 256, 3, 1, 1)
self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1)
self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 1)
self.conv4_1 = nn.Conv2d(256, 512, 3, 1, 1)
self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1)
self.conv4_3 = nn.Conv2d(512, 512, 3, 1, 1)
self.lrn = lrn.SpatialCrossMapLRN(1024,1024,0.5,1e-16)
self.conv_sim = nn.Conv2d(512, 1, template_size, 1, 0)
self.conv_sim_kernel_initialzied = False
def forward(self, x, flag_inter_feats=False):
x = F.max_pool2d(F.relu(self.conv1_2(F.relu(self.conv1_1(x)))), (2, 2))
x = F.max_pool2d(F.relu(self.conv2_2(F.relu(self.conv2_1(x)))), (2, 2))
x = F.max_pool2d(F.relu(self.conv3_3(F.relu(self.conv3_2(F.relu(self.conv3_1(x)))))), (2, 2))
x = F.relu(self.conv4_2(F.relu(self.conv4_1(x))))
if flag_inter_feats: # output intermediate features, will be used for update
y = x.clone()
x = F.relu(self.conv4_3(x))
x = self.lrn(x) # l2 normalize across channels
if self.conv_sim_kernel_initialzied:
x = self.conv_sim(x)
if flag_inter_feats:
return x,y
return x
def set_conv_sim_kernel(self, weight, bias=0):
self.conv_sim.weight.data.copy_(weight)
self.conv_sim.bias.data.fill_(bias)
self.conv_sim_kernel_initialzied = True
def reset_status(self):
self.conv_sim_kernel_initialzied = False
def initialize_net_from_pretrained_model(self, pretrained_model, model_name):
if model_name == 'vgg16':
for name, params in pretrained_model.state_dict().iteritems():
if name == 'features.0.weight':
self.conv1_1.weight.data.copy_(params)
elif name == 'features.0.bias':
self.conv1_1.bias.data.copy_(params)
elif name == 'features.2.weight':
self.conv1_2.weight.data.copy_(params)
elif name == 'features.2.bias':
self.conv1_2.bias.data.copy_(params)
elif name == 'features.5.weight':
self.conv2_1.weight.data.copy_(params)
elif name == 'features.5.bias':
self.conv2_1.bias.data.copy_(params)
elif name == 'features.7.weight':
self.conv2_2.weight.data.copy_(params)
elif name == 'features.7.bias':
self.conv2_2.bias.data.copy_(params)
elif name == 'features.10.weight':
self.conv3_1.weight.data.copy_(params)
elif name == 'features.10.bias':
self.conv3_1.bias.data.copy_(params)
elif name == 'features.12.weight':
self.conv3_2.weight.data.copy_(params)
elif name == 'features.12.bias':
self.conv3_2.bias.data.copy_(params)
elif name == 'features.14.weight':
self.conv3_3.weight.data.copy_(params)
elif name == 'features.14.bias':
self.conv3_3.bias.data.copy_(params)
elif name == 'features.17.weight':
self.conv4_1.weight.data.copy_(params)
elif name == 'features.17.bias':
self.conv4_1.bias.data.copy_(params)
elif name == 'features.19.weight':
self.conv4_2.weight.data.copy_(params)
elif name == 'features.19.bias':
self.conv4_2.bias.data.copy_(params)
elif name == 'features.21.weight':
self.conv4_3.weight.data.copy_(params)
elif name == 'features.21.bias':
self.conv4_3.bias.data.copy_(params)
else:
pass
else:
print('The net can only be initialized using vgg16!')
# This is the part of network we want to update online.
class Net2upd(nn.Module):
def __init__(self, kernel_size): # 'kernel_size' used to normalize sim scores
super(Net2upd, self).__init__()
self.conv = nn.Conv2d(512, 512, 3, 1, 1) # conv4_3
self.lrn = lrn.SpatialCrossMapLRN(1024,1024,0.5,1e-16)
self.normalizer_scalar = Variable(kernel_size, requires_grad=False)
def forward(self, x1, x2):
x1 = self.lrn(F.relu(self.conv(x1)))
x2 = self.lrn(F.relu(self.conv(x2)))
y = F.conv2d(x2, x1)
y = y * self.normalizer_scalar.expand_as(y)
y = F.sigmoid(y.view(-1))
return y
class Config():
def __init__(self):
# Tracker Params
self.qimage_size_coarse = 32
self.num_coarse_candidates = 10
self.candidate_continue_threshold = 0.5 #
self.qimage_size_fine = 64
self.probe_factor = 2
self.timage_size_fine = self.qimage_size_fine*self.probe_factor
self.timage_size_coarse = self.qimage_size_coarse*self.probe_factor
self.spatial_ratio = 8
self.query_featmap_size_coarse = (self.qimage_size_coarse // self.spatial_ratio)
self.query_featmap_size_fine = (self.qimage_size_fine // self.spatial_ratio)
self.test_featmap_size_fine = (self.timage_size_fine // self.spatial_ratio)
self.scales_coarse = np.array([0.2500,0.3536,0.5000,0.7071,1.0000,1.4142,2.0000,2.8284,4.0000], dtype=np.float32)
self.scales_fine = np.array([0.7579,0.8011,0.8467,0.8950,0.9461,1.0000,1.0570,1.1173,1.1810,1.2483,1.3195], dtype=np.float32)
self.scales_local_search = np.array([0.9509,0.9751,1.0000,1.0255,1.0517], dtype=np.float32)
scale_penalty = np.full((self.scales_local_search.size, 1,
self.test_featmap_size_fine-self.query_featmap_size_fine+1, self.test_featmap_size_fine-self.query_featmap_size_fine+1), 0.96, dtype=np.float32)
scale_penalty[2, ...] = 1.0
self.scale_penalty = torch.from_numpy(scale_penalty)
# update
self.niters_train = 10
self.lr_train = 0.01
self.wd_train = 0.0005
self.mom_train = 0.9
self.dampening_train = 0.0
self.PN_ratio = 0.1
self.sim_upd_thresh = 0.5
self.sim_glswitch_thresh = 0.3
self.max_noupd_interval = 15
def func_iou(bb, gtbb):
iou = 0
iw = min(bb[2],gtbb[2]) - max(bb[0],gtbb[0]) + 1
ih = min(bb[3],gtbb[3]) - max(bb[1],gtbb[1]) + 1
if iw>0 and ih>0:
ua = (bb[2]-bb[0]+1)*(bb[3]-bb[1]+1) + (gtbb[2]-gtbb[0]+1)*(gtbb[3]-gtbb[1]+1) - iw*ih
iou = iw*ih/ua;
return iou
###########################################
use_gpu = True # use gpu
dtype = torch.FloatTensor
if use_gpu:
dtype = torch.cuda.FloatTensor
config = Config()
handle = vot.VOT("rectangle")
# networks
pretrained_vgg16 = models.vgg16(pretrained=False)
# VGG16 trained on ImageNet (converted from Caffe model to Pytorch, caffe model provided by Ross Girshick https://github.com/rbgirshick/fast-rcnn/blob/master/data/scripts/fetch_imagenet_models.sh )
pretrained_vgg16.load_state_dict(torch.load('/home/rtao1/Projects/pytorch-vgg/pthfile/vgg16-3d698e8a.pth'))
net_stage1 = Net(config.query_featmap_size_coarse)
net_stage1.initialize_net_from_pretrained_model(pretrained_vgg16, 'vgg16')
net_stage2 = Net(config.query_featmap_size_coarse)
net_stage2.initialize_net_from_pretrained_model(pretrained_vgg16, 'vgg16')
net_stage3 = Net(config.query_featmap_size_fine)
net_stage3.initialize_net_from_pretrained_model(pretrained_vgg16, 'vgg16')
K = torch.FloatTensor(1).fill_((float(config.spatial_ratio)/config.qimage_size_coarse)**2)
if use_gpu:
K = K.cuda()
net_upd = Net2upd(K)
if use_gpu:
net_stage1 = net_stage1.cuda()
net_stage2 = net_stage2.cuda()
net_stage3 = net_stage3.cuda()
net_upd = net_upd.cuda()
pixel_means = np.array([104.00698793, 116.66876762, 122.67891434])
net_stage1.reset_status()
net_stage2.reset_status()
net_stage3.reset_status()
net_upd.conv.weight.data.copy_(net_stage2.conv4_3.weight.data)
net_upd.conv.bias.data.copy_(net_stage2.conv4_3.bias.data)
################################
selection = handle.region() # 0-index
imagefile = handle.frame()
if not imagefile:
sys.exit(0)
init_box = np.zeros(4,)
init_box[0] = selection.x + 1
init_box[1] = selection.y + 1
init_box[2] = init_box[0] + selection.width - 1
init_box[3] = init_box[1] + selection.height - 1
init_box_w = selection.width
init_box_h = selection.height
#---------process query frame-------#
qimg = Image.open(imagefile)
if qimg.mode == 'L': # gray-scale
qimg = qimg.convert('RGB')
qbox = init_box.copy()
qbox[0] = qbox[0] - 0.5 * init_box_w # to include some context
qbox[2] = qbox[2] + 0.5 * init_box_w
qbox[1] = qbox[1] - 0.5 * init_box_h
qbox[3] = qbox[3] + 0.5 * init_box_h
# stage 1
qimg_proc_tensor1 = im_processing.process_im_single_crop_for_network_caffe(qimg, qbox, config.qimage_size_coarse*2, config.qimage_size_coarse*2, pixel_means)
qimg_proc_tensor1.unsqueeze_(0) # add one dimension to form a batch
qimg_proc_variable1 = Variable(qimg_proc_tensor1.type(dtype), requires_grad=False)
qfeat1, q_inter_feats = net_stage1(qimg_proc_variable1,True)
#-----#
query_fixed_feats = q_inter_feats.data[:,:,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2].clone()
query_fixed_feats_var = Variable(query_fixed_feats, requires_grad=False)
conv_sim_weight1 = qfeat1.data[:,:,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2]
net_stage1.set_conv_sim_kernel(conv_sim_weight1)
# stage 2
net_stage2.set_conv_sim_kernel(conv_sim_weight1)
# stage 3
qimg_proc_tensor2 = im_processing.process_im_single_crop_for_network_caffe(qimg, qbox, config.qimage_size_fine*2, config.qimage_size_fine*2, pixel_means)
qimg_proc_tensor2.unsqueeze_(0) # add one dimension to form a batch
qimg_proc_variable2 = Variable(qimg_proc_tensor2.type(dtype), requires_grad=False)
qfeat2 = net_stage3(qimg_proc_variable2)
conv_sim_weight2 = qfeat2.data[:,:,(config.qimage_size_fine//config.spatial_ratio)/2:(config.qimage_size_fine//config.spatial_ratio)+(config.qimage_size_fine//config.spatial_ratio)/2,(config.qimage_size_fine//config.spatial_ratio)/2:(config.qimage_size_fine//config.spatial_ratio)+(config.qimage_size_fine//config.spatial_ratio)/2]
net_stage3.set_conv_sim_kernel(conv_sim_weight2)
###################
reduce_factor = 1
max_width_height = 1750 # due to GPU memory limit
prev_box = init_box.copy() # for local search
prev_sim_score = 1
buf4upd_img = None
buf4upd_probe = np.zeros((1,4), dtype=np.float32)
buf4upd_bb = np.zeros((1,4), dtype=np.float32)
last_upd_frame_id = 0
buf_fresh = True
frame_counter = 0
while True:
imagefile = handle.frame()
if not imagefile:
break
timg = Image.open(imagefile)
if timg.mode == 'L':
timg = timg.convert('RGB')
if prev_sim_score < config.sim_glswitch_thresh: # do glboal search on this frame
#---------------------------STAGE 1----------------------------------------#
max_s = np.round(timg.width * config.qimage_size_coarse * reduce_factor / init_box_w) * np.round(timg.height * config.qimage_size_coarse * reduce_factor / init_box_h)
while max_s > (max_width_height*max_width_height):
reduce_factor = reduce_factor * 0.9
max_s = np.round(timg.width * config.qimage_size_coarse * reduce_factor / init_box_w) * np.round(timg.height * config.qimage_size_coarse * reduce_factor / init_box_h)
print reduce_factor
timg_full_tensor = im_processing.process_frame_global_spatial_search_for_network_caffe(timg, init_box_w, init_box_h, config.qimage_size_coarse * reduce_factor, config.qimage_size_coarse * reduce_factor, config.spatial_ratio, pixel_means)
timg_full_tensor.unsqueeze_(0)
timg_full_var = Variable(timg_full_tensor.type(dtype), requires_grad=False)
scoremap_stage1 = net_stage1(timg_full_var).data.cpu()
scoremap_ = scoremap_stage1[0,0,:,:]
overlap_factor = config.qimage_size_coarse / config.spatial_ratio / 2 - 1
prev_score = 0.00000001
candidates_counter = 0
candidates_stage1 = np.zeros((config.num_coarse_candidates,5), dtype=np.float32)
for ii in range(config.num_coarse_candidates):
max_score, max_idx = torch.max(scoremap_.view(-1), 0)
if candidates_counter > 0 and (max_score[0] / prev_score) < config.candidate_continue_threshold:
break
candidates_counter = candidates_counter + 1
prev_score = max_score[0]
r_idx = math.ceil(float(max_idx[0]+1)/scoremap_.size(1))
c_idx = math.fmod(max_idx[0]+1,scoremap_.size(1))
if c_idx == 0:
c_idx = scoremap_.size(1)
candidates_stage1[ii,0] = ((c_idx-1) * config.spatial_ratio / np.round(timg.width * config.qimage_size_coarse * reduce_factor / init_box_w) * timg.width) + 1
candidates_stage1[ii,1] = ((r_idx-1) * config.spatial_ratio / np.round(timg.height * config.qimage_size_coarse * reduce_factor / init_box_h) * timg.height) + 1
candidates_stage1[ii,2] = candidates_stage1[ii,0] + init_box_w - 1
candidates_stage1[ii,3] = candidates_stage1[ii,1] + init_box_h - 1
candidates_stage1[ii,4] = max_score[0]
try:
scoremap_[int(np.maximum(r_idx-overlap_factor,1)-1):int(np.minimum(r_idx+overlap_factor,scoremap_.size(0))),int(np.maximum(c_idx-overlap_factor,1)-1):int(np.minimum(c_idx+overlap_factor,scoremap_.size(1)))] = 0
except:
print(int(np.maximum(r_idx-overlap_factor,1)-1), int(np.minimum(r_idx+overlap_factor,scoremap_.size(0))), int(np.maximum(c_idx-overlap_factor,1)-1), int(np.minimum(c_idx+overlap_factor,scoremap_.size(1))))
candidates_stage1 = candidates_stage1[:candidates_counter,:]
#---------------------------STAGE 2----------------------------------------#
probe_regions_stage2 = tracking_utils.sample_probe_regions_multiscale_multiple_anchors(candidates_stage1[:,:4], config.scales_coarse, config.probe_factor)
probe_regions_stage2_tensor = im_processing.process_im_multipe_crops_unordered_for_network_caffe(timg, probe_regions_stage2, config.qimage_size_coarse*config.probe_factor, config.qimage_size_coarse*config.probe_factor, pixel_means)
probe_regions_stage2_var = Variable(probe_regions_stage2_tensor.type(dtype), requires_grad=False)
scoremap_stage2_var, t_inter_feats_var = net_stage2(probe_regions_stage2_var,True)
scoremap_stage2 = scoremap_stage2_var.data.cpu()
#------#
intermediate_feats = t_inter_feats_var.data.clone() #torch tensor
max_value, s_idx, r_idx, c_idx = tracking_utils.select_max_response(scoremap_stage2)
probe_sel = probe_regions_stage2[int(s_idx-1),:].copy()
predicted_box_stage2 = probe_sel.copy()
predicted_box_stage2[0] = np.maximum(probe_sel[0] + float(c_idx-1) * config.spatial_ratio / config.timage_size_coarse * (probe_sel[2]-probe_sel[0]+1), 1)
predicted_box_stage2[1] = np.maximum(probe_sel[1] + float(r_idx-1) * config.spatial_ratio / config.timage_size_coarse * (probe_sel[3]-probe_sel[1]+1), 1)
scale_sel = math.fmod(s_idx, config.scales_coarse.shape[0])
if scale_sel == 0:
scale_sel = config.scales_coarse.shape[0]
predicted_box_stage2[2] = predicted_box_stage2[0] + float(init_box_w) * config.scales_coarse[int(scale_sel)-1] - 1
predicted_box_stage2[3] = predicted_box_stage2[1] + float(init_box_h) * config.scales_coarse[int(scale_sel)-1] - 1
#---------------------------STAGE 3----------------------------------------#
probe_regions_stage3 = tracking_utils.sample_probe_regions_multiscale_single_anchor(predicted_box_stage2, config.scales_fine, config.probe_factor)
probe_regions_stage3_tensor = im_processing.process_im_multipe_crops_ordered_for_network_caffe(timg, probe_regions_stage3, config.timage_size_fine, config.timage_size_fine, pixel_means)
probe_regions_stage3_var = Variable(probe_regions_stage3_tensor.type(dtype), requires_grad=False)
scoremap_stage3 = net_stage3(probe_regions_stage3_var).data.cpu()
max_value, s_idx, r_idx, c_idx = tracking_utils.select_max_response(scoremap_stage3)
confidence = max_value / config.query_featmap_size_fine / config.query_featmap_size_fine
prev_sim_score = confidence
probe_sel = probe_regions_stage3[int(s_idx-1),:].copy()
predicted_box_stage3 = probe_sel.copy()
predicted_box_stage3[0] = np.maximum(probe_sel[0] + float(c_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[2]-probe_sel[0]+1), 1)
predicted_box_stage3[1] = np.maximum(probe_sel[1] + float(r_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[3]-probe_sel[1]+1), 1)
predicted_box_stage3[2] = np.minimum(predicted_box_stage3[0] + float(predicted_box_stage2[2]-predicted_box_stage2[0]+1) * config.scales_fine[int(s_idx)-1] - 1, timg.width)
predicted_box_stage3[3] = np.minimum(predicted_box_stage3[1] + float(predicted_box_stage2[3]-predicted_box_stage2[1]+1) * config.scales_fine[int(s_idx)-1] - 1, timg.height)
ret_box = predicted_box_stage3.copy()
# prev_box: for local search
prev_box = predicted_box_stage3.copy()
prev_box[0] = probe_sel[0] + float(c_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[2]-probe_sel[0]+1)
prev_box[1] = probe_sel[1] + float(r_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[3]-probe_sel[1]+1)
prev_box[2] = prev_box[0] + float(predicted_box_stage2[2]-predicted_box_stage2[0]+1) * config.scales_fine[int(s_idx)-1] - 1
prev_box[3] = prev_box[1] + float(predicted_box_stage2[3]-predicted_box_stage2[1]+1) * config.scales_fine[int(s_idx)-1] - 1
#-------------------------UPDATE------------------------------------------#
if candidates_counter > 1 and confidence > config.sim_upd_thresh :
probe_sel_stage3 = probe_sel
ov_stage2_probes = np.zeros((probe_regions_stage2.shape[0],))
for ii in range(probe_regions_stage2.shape[0]):
ov_stage2_probes[ii] = func_iou(probe_regions_stage2[ii,:], probe_sel_stage3) #
selected_neg = ov_stage2_probes <= 0 # numpy array
num_neg_probes = np.sum(selected_neg)
if num_neg_probes > 0:
# labels
labels = torch.FloatTensor(num_neg_probes+1, 1, scoremap_stage2.size(2), scoremap_stage2.size(3)).fill_(0)
labels[0,0,(scoremap_stage2.size(2)+1)/2-1, (scoremap_stage2.size(3)+1)/2-1] = 1
# sample weights
sample_ws = torch.FloatTensor(num_neg_probes+1, 1, scoremap_stage2.size(2), scoremap_stage2.size(3)).fill_(1)
sample_ws[0,:,:,:] = 0
sample_ws[0,0,(scoremap_stage2.size(2)+1)/2-1, (scoremap_stage2.size(3)+1)/2-1] = num_neg_probes*scoremap_stage2.size(2)*scoremap_stage2.size(3)*config.PN_ratio
# data
pb_pos = tracking_utils.sample_probe_regions_multiscale_single_anchor(predicted_box_stage3, np.array([1.0]), config.probe_factor)
pb_pos_tensor = im_processing.process_im_single_crop_for_network_caffe(timg, pb_pos.squeeze(), config.timage_size_coarse, config.timage_size_coarse, pixel_means)
pb_pos_tensor.unsqueeze_(0)
pb_pos_var = Variable(pb_pos_tensor.type(dtype), requires_grad=False)
_, pb_pos_inter_feats_var = net_stage2(pb_pos_var,True)
indices = torch.linspace(1,probe_regions_stage2.shape[0],probe_regions_stage2.shape[0]).long()
indices = indices[torch.from_numpy(selected_neg.astype(np.float32)).eq(1)]-1
train_data_tensor = torch.FloatTensor(num_neg_probes+1, intermediate_feats.size(1), intermediate_feats.size(2), intermediate_feats.size(3))
if use_gpu:
train_data_tensor = train_data_tensor.cuda()
indices = indices.cuda()
sample_ws = sample_ws.cuda()
train_data_tensor[0,:,:,:] = pb_pos_inter_feats_var.data
train_data_tensor[1:,:,:,:] = torch.index_select(intermediate_feats, 0, indices)
#query_fixed_feats_var
train_var2 = Variable(train_data_tensor, requires_grad=False)
loss_fn = torch.nn.BCELoss(sample_ws.view(-1))
if use_gpu:
loss_fn = loss_fn.cuda()
labels_var = Variable(labels.view(-1).type(dtype), requires_grad=False)
optimizer = torch.optim.SGD(net_upd.parameters(), config.lr_train, config.mom_train, config.dampening_train, config.wd_train)
torch.backends.cudnn.enabled = False # cudnn introduces stochastic effects during backprop
for ii in range(config.niters_train):
loss = loss_fn(net_upd(query_fixed_feats_var,train_var2), labels_var)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.backends.cudnn.enabled = True
last_upd_frame_id = frame_counter
###
net_stage2.conv4_3.weight.data.copy_(net_upd.conv.weight.data)
net_stage2.conv4_3.bias.data.copy_(net_upd.conv.bias.data)
### re-compute query for stage 2
net_stage2.reset_status()
qfeat_new = net_stage2(qimg_proc_variable1)
net_stage2.set_conv_sim_kernel(qfeat_new.data[:,:,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2])
#-------------------------------------------------------------------------#
frame_counter = frame_counter + 1
handle.report(vot.Rectangle(ret_box[0] - 1, ret_box[1] - 1, ret_box[2] - ret_box[0] + 1, ret_box[3] - ret_box[1] + 1), confidence)
else: # local search
probe_regions = tracking_utils.sample_probe_regions_multiscale_single_anchor(prev_box, config.scales_local_search, config.probe_factor)
probe_regions_tensor = im_processing.process_im_multipe_crops_ordered_for_network_caffe(timg, probe_regions, config.timage_size_fine, config.timage_size_fine, pixel_means)
probe_regions_variable = Variable(probe_regions_tensor.type(dtype), requires_grad=False)
########
scoremap = net_stage3(probe_regions_variable).data.cpu()
scoremap = scoremap * config.scale_penalty
max_value, s_idx, r_idx, c_idx = tracking_utils.select_max_response(scoremap)
confidence = max_value / config.query_featmap_size_fine / config.query_featmap_size_fine
prev_sim_score = confidence
probe_sel = probe_regions[int(s_idx-1),:].copy()
predicted_box = probe_sel.copy()
predicted_box[0] = probe_sel[0] + float(c_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[2]-probe_sel[0]+1)
predicted_box[1] = probe_sel[1] + float(r_idx-1) * config.spatial_ratio / config.timage_size_fine * (probe_sel[3]-probe_sel[1]+1)
predicted_box[2] = predicted_box[0] + float(prev_box[2]-prev_box[0]+1) * config.scales_local_search[int(s_idx-1)] - 1
predicted_box[3] = predicted_box[1] + float(prev_box[3]-prev_box[1]+1) * config.scales_local_search[int(s_idx-1)] - 1
prev_box = predicted_box.copy() ###
final_box = predicted_box.copy()
final_box[0] = np.maximum(final_box[0],1)
final_box[1] = np.maximum(final_box[1],1)
final_box[2] = np.minimum(final_box[2],timg.width)
final_box[3] = np.minimum(final_box[3],timg.height)
#------------------update------------#
if confidence > config.sim_upd_thresh: # good to update, buffer the data needed for updating
buf4upd_probe = probe_sel.copy()
buf4upd_bb = predicted_box.copy()
buf4upd_img = Image.open(imagefile)
if buf4upd_img.mode == 'L':
buf4upd_img = buf4upd_img.convert('RGB')
buf_fresh = True
######################################################################
if (prev_sim_score < config.sim_glswitch_thresh or (frame_counter - last_upd_frame_id) >= config.max_noupd_interval) and buf4upd_img is not None and buf_fresh: # global search next frame
# update
buf_fresh = False
# stage 1 #####################
max_s = np.round(buf4upd_img.width * config.qimage_size_coarse * reduce_factor / init_box_w) * np.round(buf4upd_img.height * config.qimage_size_coarse * reduce_factor / init_box_h)
while max_s > (max_width_height*max_width_height):
reduce_factor = reduce_factor * 0.9
max_s = np.round(buf4upd_img.width * config.qimage_size_coarse * reduce_factor / init_box_w) * np.round(buf4upd_img.height * config.qimage_size_coarse * reduce_factor / init_box_h)
# print reduce_factor
timg_full_tensor = im_processing.process_frame_global_spatial_search_for_network_caffe(buf4upd_img, init_box_w, init_box_h, config.qimage_size_coarse * reduce_factor, config.qimage_size_coarse * reduce_factor, config.spatial_ratio, pixel_means)
timg_full_tensor.unsqueeze_(0)
timg_full_var = Variable(timg_full_tensor.type(dtype), requires_grad=False)
scoremap_stage1 = net_stage1(timg_full_var).data.cpu()
scoremap_ = scoremap_stage1[0,0,:,:]
overlap_factor = config.qimage_size_coarse / config.spatial_ratio / 2 - 1
candidates_stage1 = np.zeros((config.num_coarse_candidates,4), dtype=np.float32)
for ii in range(config.num_coarse_candidates):
max_score, max_idx = torch.max(scoremap_.view(-1), 0)
r_idx = math.ceil(float(max_idx[0]+1)/scoremap_.size(1))
c_idx = math.fmod(max_idx[0]+1,scoremap_.size(1))
if c_idx == 0:
c_idx = scoremap_.size(1)
candidates_stage1[ii,0] = ((c_idx-1) * config.spatial_ratio / np.round(buf4upd_img.width * config.qimage_size_coarse * reduce_factor / init_box_w) * buf4upd_img.width) + 1
candidates_stage1[ii,1] = ((r_idx-1) * config.spatial_ratio / np.round(buf4upd_img.height * config.qimage_size_coarse * reduce_factor / init_box_h) * buf4upd_img.height) + 1
candidates_stage1[ii,2] = candidates_stage1[ii,0] + init_box_w - 1
candidates_stage1[ii,3] = candidates_stage1[ii,1] + init_box_h - 1
try:
scoremap_[int(np.maximum(r_idx-overlap_factor,1)-1):int(np.minimum(r_idx+overlap_factor,scoremap_.size(0))),int(np.maximum(c_idx-overlap_factor,1)-1):int(np.minimum(c_idx+overlap_factor,scoremap_.size(1)))] = 0
except:
print(int(np.maximum(r_idx-overlap_factor,1)-1), int(np.minimum(r_idx+overlap_factor,scoremap_.size(0))), int(np.maximum(c_idx-overlap_factor,1)-1), int(np.minimum(c_idx+overlap_factor,scoremap_.size(1))))
# stage 2 #########################
probe_regions_stage2 = tracking_utils.sample_probe_regions_multiscale_multiple_anchors(candidates_stage1, config.scales_coarse, config.probe_factor)
# update ##########################
ov_stage2_probes = np.zeros((probe_regions_stage2.shape[0],))
for ii in range(probe_regions_stage2.shape[0]):
ov_stage2_probes[ii] = func_iou(probe_regions_stage2[ii,:], buf4upd_probe) #!!!!!
selected_neg = ov_stage2_probes <= 0 # numpy array
num_neg_probes = np.sum(selected_neg)
probe_regions_stage2 = probe_regions_stage2[selected_neg,:]
if num_neg_probes > 0:
probe_regions_stage2_tensor = im_processing.process_im_multipe_crops_unordered_for_network_caffe(buf4upd_img, probe_regions_stage2, config.qimage_size_coarse*config.probe_factor, config.qimage_size_coarse*config.probe_factor, pixel_means)
probe_regions_stage2_var = Variable(probe_regions_stage2_tensor.type(dtype), requires_grad=False)
scoremap_stage2, t_inter_feats_var = net_stage2(probe_regions_stage2_var,True)
labels = torch.FloatTensor(num_neg_probes+1, 1, scoremap_stage2.size(2), scoremap_stage2.size(3)).fill_(0)
labels[0,0,(scoremap_stage2.size(2)+1)/2-1, (scoremap_stage2.size(3)+1)/2-1] = 1
# sample weights
sample_ws = torch.FloatTensor(num_neg_probes+1, 1, scoremap_stage2.size(2), scoremap_stage2.size(3)).fill_(1)
sample_ws[0,:,:,:] = 0
sample_ws[0,0,(scoremap_stage2.size(2)+1)/2-1, (scoremap_stage2.size(3)+1)/2-1] = num_neg_probes*scoremap_stage2.size(2)*scoremap_stage2.size(3)*config.PN_ratio
# data
pb_pos = tracking_utils.sample_probe_regions_multiscale_single_anchor(buf4upd_bb, np.array([1.0]), config.probe_factor)
pb_pos_tensor = im_processing.process_im_single_crop_for_network_caffe(buf4upd_img, pb_pos.squeeze(), config.timage_size_coarse, config.timage_size_coarse, pixel_means)
pb_pos_tensor.unsqueeze_(0)
pb_pos_var = Variable(pb_pos_tensor.type(dtype), requires_grad=False)
_, pb_pos_inter_feats_var = net_stage2(pb_pos_var,True)
train_data_tensor = torch.FloatTensor(num_neg_probes+1, t_inter_feats_var.size(1), t_inter_feats_var.size(2), t_inter_feats_var.size(3))
if use_gpu:
train_data_tensor = train_data_tensor.cuda()
sample_ws = sample_ws.cuda()
train_data_tensor[0,:,:,:] = pb_pos_inter_feats_var.data
train_data_tensor[1:,:,:,:] = t_inter_feats_var.data
#query_fixed_feats_var
train_var2 = Variable(train_data_tensor, requires_grad=False)
loss_fn = torch.nn.BCELoss(sample_ws.view(-1))
if use_gpu:
loss_fn = loss_fn.cuda()
labels_var = Variable(labels.view(-1).type(dtype), requires_grad=False)
optimizer = torch.optim.SGD(net_upd.parameters(), config.lr_train, config.mom_train, config.dampening_train, config.wd_train)
torch.backends.cudnn.enabled = False
for ii in range(config.niters_train):
loss = loss_fn(net_upd(query_fixed_feats_var,train_var2), labels_var)
optimizer.zero_grad()
loss.backward()
optimizer.step()
torch.backends.cudnn.enabled = True
last_upd_frame_id = frame_counter
###
net_stage2.conv4_3.weight.data.copy_(net_upd.conv.weight.data)
net_stage2.conv4_3.bias.data.copy_(net_upd.conv.bias.data)
### re-compute query for stage 2
net_stage2.reset_status()
qfeat_new = net_stage2(qimg_proc_variable1)
net_stage2.set_conv_sim_kernel(qfeat_new.data[:,:,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2,(config.qimage_size_coarse//config.spatial_ratio)/2:(config.qimage_size_coarse//config.spatial_ratio)+(config.qimage_size_coarse//config.spatial_ratio)/2])
frame_counter = frame_counter + 1
handle.report(vot.Rectangle(final_box[0] - 1, final_box[1] - 1, final_box[2] - final_box[0] + 1, final_box[3] - final_box[1] + 1), confidence)