diff --git a/ext/QuantumCliffordJuMPExt/QuantumCliffordJuMPExt.jl b/ext/QuantumCliffordJuMPExt/QuantumCliffordJuMPExt.jl index 8b5a7b7fe..92260bb65 100644 --- a/ext/QuantumCliffordJuMPExt/QuantumCliffordJuMPExt.jl +++ b/ext/QuantumCliffordJuMPExt/QuantumCliffordJuMPExt.jl @@ -10,10 +10,9 @@ import GLPK: Optimizer import QuantumClifford import QuantumClifford: stab_to_gf2, logicalxview, logicalzview, canonicalize!, - MixedDestabilizer, Stabilizer, gf2_row_echelon_with_pivots! + MixedDestabilizer, Stabilizer import QuantumClifford.ECC -import QuantumClifford.ECC: distance, AbstractECC, code_n, code_k, parity_checks, - parity_checks_x, parity_checks_z +import QuantumClifford.ECC: distance, AbstractECC, code_n, code_k, parity_checks import SparseArrays import SparseArrays: SparseMatrixCSC, sparse, spzeros, findnz, sparsevec diff --git a/ext/QuantumCliffordJuMPExt/min_distance_mixed_integer_programming.jl b/ext/QuantumCliffordJuMPExt/min_distance_mixed_integer_programming.jl index 8e5c32e22..d660e2891 100644 --- a/ext/QuantumCliffordJuMPExt/min_distance_mixed_integer_programming.jl +++ b/ext/QuantumCliffordJuMPExt/min_distance_mixed_integer_programming.jl @@ -147,17 +147,17 @@ to a mixed integer linear program and using the GNU Linear Programming Kit. the code distance was calculated using the mixed integer programming approach. """ -function distance(c::AbstractECC; upper_bound=false, logical_qubit=code_k(c), all_logical_qubits=false, logical_operator_type=:X) +function distance(c::Stabilizer; upper_bound=false, logical_qubit=code_k(c), all_logical_qubits=false, logical_operator_type=:X) 1 <= logical_qubit <= code_k(c) || throw(ArgumentError("The number of logical qubit must be between 1 and $(code_k(c)) inclusive")) logical_operator_type == :X || logical_operator_type == :Z || throw(ArgumentError("Invalid type of logical operator: Use :X or :Z")) - hx = Matrix{Int}(parity_checks_x(c)) - hz = Matrix{Int}(parity_checks_z(c)) - l = get_logicals(hz, hx) + l = get_lx_lz(c)[1] + H = SparseMatrixCSC{Int, Int}(stab_to_gf2(parity_checks(c))) + h = get_stab(H, :X) if logical_operator_type == :Z - l = get_logicals(hx, hz) - h = SparseMatrixCSC{Int, Int}(hz) + l = get_lx_lz(c)[2] + H = SparseMatrixCSC{Int, Int}(stab_to_gf2(parity_checks(c))) + h = get_stab(H, :Z) end - h = SparseMatrixCSC{Int, Int}(hx) weights = Dict{Int, Int}() for i in 1:logical_qubit w = _minimum_distance(h, l[i, :]) diff --git a/ext/QuantumCliffordJuMPExt/util.jl b/ext/QuantumCliffordJuMPExt/util.jl index 54794ef9b..bcd77f0ce 100644 --- a/ext/QuantumCliffordJuMPExt/util.jl +++ b/ext/QuantumCliffordJuMPExt/util.jl @@ -1,24 +1,20 @@ -""" -A logical X-type operator \$L_x\$ satisfies the -following two conditions: -1. \$L_x \\in \\ker(H_z)\$ -2. \$L_x \\notin \\text{Im}(H_x^T)\$ +function get_stab(matrix::SparseMatrixCSC{Int, Int}, logical_operator_type::Symbol) + rows, cols = size(matrix) + if logical_operator_type == :Z + col_range = 1:div(cols, 2) + else logical_operator_type == :X + col_range = div(cols, 2) + 1:cols + end + submatrix = matrix[:, col_range] + non_zero_rows = unique(submatrix.rowval) + zero_rows = setdiff(1:rows, non_zero_rows) + return matrix[zero_rows, :] +end -A logical Z-type operator \$L_z\$ satisfies the -following two conditions: -1. \$L_z \\in \\ker(H_x)\$ -2. \$L_z \\notin \\text{Im}(H_z^T)\$ -""" -function get_logicals(hx, hz) - m = size(copy(hx)',1) - ker_hx = (gf2_row_echelon_with_pivots!(copy(hx)')[3])[gf2_row_echelon_with_pivots!(copy(hx)')[2]+1:m, :] # nullspace - im_hzT = copy(hz)[gf2_row_echelon_with_pivots!(copy(hz)')[4],:] # row-basis - log_stack = vcat(im_hzT, ker_hx) - log_stackT = log_stack' - pivots = gf2_row_echelon_with_pivots!(copy(log_stackT))[4] - r1 = size(copy(im_hzT),1) - r2 = size(copy(log_stack),1) - log_op_indices = [i for i in r1+1:r2 if i in copy(pivots)] - log_ops = copy(log_stack)[log_op_indices, :] - SparseMatrixCSC{Int, Int}(log_ops) +function get_lx_lz(c::Stabilizer) + lx = stab_to_gf2(logicalxview(canonicalize!(MixedDestabilizer(c)))) + lz = stab_to_gf2(logicalzview(canonicalize!(MixedDestabilizer(c)))) + lx = SparseMatrixCSC{Int, Int}(lx) + lz = SparseMatrixCSC{Int, Int}(lz) + return lx, lz end diff --git a/src/QuantumClifford.jl b/src/QuantumClifford.jl index 800ffb231..6b90af7a8 100644 --- a/src/QuantumClifford.jl +++ b/src/QuantumClifford.jl @@ -31,7 +31,6 @@ export affectedqubits, #TODO move to QuantumInterface? # GF2 stab_to_gf2, gf2_gausselim!, gf2_isinvertible, gf2_invert, gf2_H_to_G, - gf2_row_echelon_with_pivots!, # Canonicalization canonicalize!, canonicalize_rref!, canonicalize_gott!, # Linear Algebra @@ -1169,50 +1168,6 @@ function gf2_H_to_G(H) G[:,invperm(sindx)] end -"""Performs in-place Gaussian elimination on a binary matrix and returns -its *row echelon form*,*rank*, the *transformation matrix*, and the *pivot -columns*. The transformation matrix that converts the original matrix into -the row echelon form. The `full` parameter controls the extent of elimination: -if `true`, only rows below the pivot are affected; if `false`, both above and -below the pivot are eliminated.""" -function gf2_row_echelon_with_pivots!(M::AbstractMatrix{Int}; full=false) - r, c = size(M) - N = Matrix{Int}(LinearAlgebra.I, r, r) - p = 1 - pivots = Int[] - for col in 1:c - @inbounds for row in p:r - if M[row, col] == 1 - if row != p - M[[row, p], :] .= M[[p, row], :] - N[[row, p], :] .= N[[p, row], :] - end - break - end - end - if M[p, col] == 1 - if !full - elim_range = p+1:r - else - elim_range = 1:r - end - @simd for j in elim_range - @inbounds if j != p && M[j, col] == 1 - M[j, :] .= (M[j, :] .+ M[p, :]) .% 2 - N[j, :] .= (N[j, :] .+ N[p, :]) .% 2 - end - end - p += 1 - push!(pivots, col) - end - if p > r - break - end - end - rank = p - 1 - return M, rank, N, pivots -end - ############################## # Error classes ##############################