diff --git a/Project.toml b/Project.toml index e49f22503..052e5e394 100644 --- a/Project.toml +++ b/Project.toml @@ -27,6 +27,7 @@ CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" Hecke = "3e1990a7-5d81-5526-99ce-9ba3ff248f21" LDPCDecoders = "3c486d74-64b9-4c60-8b1a-13a564e77efb" Makie = "ee78f7c6-11fb-53f2-987a-cfe4a2b5a57a" +Oscar = "f1435218-dba5-11e9-1e4d-f1a5fab5fc13" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" PyQDecoders = "17f5de1a-9b79-4409-a58d-4d45812840f7" Quantikz = "b0d11df0-eea3-4d79-b4a5-421488cbf74b" @@ -37,6 +38,7 @@ QuantumCliffordGPUExt = "CUDA" QuantumCliffordHeckeExt = "Hecke" QuantumCliffordLDPCDecodersExt = "LDPCDecoders" QuantumCliffordMakieExt = "Makie" +QuantumCliffordOscarExt = ["Hecke", "Oscar"] QuantumCliffordPlotsExt = "Plots" QuantumCliffordPyQDecodersExt = "PyQDecoders" QuantumCliffordQOpticsExt = "QuantumOpticsBase" @@ -57,6 +59,7 @@ LinearAlgebra = "1.9" MacroTools = "0.5.9" Makie = "0.20, 0.21" Nemo = "0.42.1, 0.43, 0.44, 0.45, 0.46, 0.47" +Oscar = "1.1.1" Plots = "1.38.0" PrecompileTools = "1.2" PyQDecoders = "0.2.1" diff --git a/docs/make.jl b/docs/make.jl index b8d13fc30..d186708e9 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -12,6 +12,11 @@ import Hecke const QuantumCliffordHeckeExt = Base.get_extension(QuantumClifford, :QuantumCliffordHeckeExt) +ENV["OSCAR_PRINT_BANNER"] = "false" +import Oscar + +const QuantumCliffordOscarExt = Base.get_extension(QuantumClifford, :QuantumCliffordOscarExt) + #DocMeta.setdocmeta!(QuantumClifford, :DocTestSetup, :(using QuantumClifford); recursive=true) ENV["LINES"] = 80 # for forcing `displaysize(io)` to be big enough @@ -25,7 +30,7 @@ doctest = false, clean = true, sitename = "QuantumClifford.jl", format = Documenter.HTML(size_threshold_ignore = ["API.md"]), -modules = [QuantumClifford, QuantumClifford.Experimental.NoisyCircuits, QuantumClifford.ECC, QuantumInterface, QuantumCliffordHeckeExt], +modules = [QuantumClifford, QuantumClifford.Experimental.NoisyCircuits, QuantumClifford.ECC, QuantumInterface, QuantumCliffordHeckeExt, QuantumCliffordOscarExt], warnonly = [:missing_docs], linkcheck = true, authors = "Stefan Krastanov", diff --git a/docs/src/ECC_API.md b/docs/src/ECC_API.md index c400a2bf4..9a17afdfa 100644 --- a/docs/src/ECC_API.md +++ b/docs/src/ECC_API.md @@ -10,4 +10,11 @@ Private = false ```@autodocs Modules = [QuantumCliffordHeckeExt] Private = true +``` + +## Implemented in an extension requiring `Oscar.jl` + +```@autodocs +Modules = [QuantumCliffordOscarExt] +Private = true ``` \ No newline at end of file diff --git a/docs/src/references.bib b/docs/src/references.bib index 05276ff75..dea89e53b 100644 --- a/docs/src/references.bib +++ b/docs/src/references.bib @@ -561,3 +561,23 @@ @article{haah2011local pages={042330}, year={2011}, } + +@inproceedings{wang2023abelian, + title={Abelian and non-Abelian quantum two-block codes}, + author={Wang, Renyu and Lin, Hsiang-Ku and Pryadko, Leonid P}, + booktitle={2023 12th International Symposium on Topics in Coding (ISTC)}, + pages={1--5}, + year={2023}, + organization={IEEE} +} + +@article{naghipour2015quantum, + title={Quantum stabilizer codes from Abelian and non-Abelian groups association schemes}, + author={Naghipour, Avaz and Jafarizadeh, Mohammad Ali and Shahmorad, Sedaghat}, + journal={International Journal of Quantum Information}, + volume={13}, + number={03}, + pages={1550021}, + year={2015}, + publisher={World Scientific} +} diff --git a/docs/src/references.md b/docs/src/references.md index 97c679136..993fd5989 100644 --- a/docs/src/references.md +++ b/docs/src/references.md @@ -45,6 +45,8 @@ For quantum code construction routines: - [lin2024quantum](@cite) - [bravyi2024high](@cite) - [haah2011local](@cite) +- [wang2023abelian](@cite) +- [naghipour2015quantum](@cite) For classical code construction routines: - [muller1954application](@cite) diff --git a/ext/QuantumCliffordOscarExt/QuantumCliffordOscarExt.jl b/ext/QuantumCliffordOscarExt/QuantumCliffordOscarExt.jl new file mode 100644 index 000000000..1e45d958a --- /dev/null +++ b/ext/QuantumCliffordOscarExt/QuantumCliffordOscarExt.jl @@ -0,0 +1,19 @@ +module QuantumCliffordOscarExt + +using DocStringExtensions + +import Nemo +import Nemo: FqFieldElem +import Hecke: group_algebra, GF, abelian_group, gens, quo, one, GroupAlgebra, + GroupAlgebraElem, direct_product, sub +import Oscar +import Oscar: free_group, small_group_identification, describe, order, FPGroupElem, FPGroup, + BasicGAPGroupElem, DirectProductGroup, cyclic_group + +import QuantumClifford.ECC: two_block_group_algebra_codes + +include("types.jl") +include("direct_product.jl") +include("group_presentation.jl") + +end # module diff --git a/ext/QuantumCliffordOscarExt/direct_product.jl b/ext/QuantumCliffordOscarExt/direct_product.jl new file mode 100644 index 000000000..0d5d9f334 --- /dev/null +++ b/ext/QuantumCliffordOscarExt/direct_product.jl @@ -0,0 +1,110 @@ +""" +# Direct Product of Groups + +The direct product of groups is instrumental in constructing group algebra of two-block +group algebra code. Lin and Pryadko illustrate this method in Appendix C, Table 2 of +[lin2024quantum](@cite), where they utilize the direct product of two cyclic groups, +expressed as `C₂ₘ = Cₘ × C₂`, with an order of `2m`. + +`Hecke.jl` contains only abelian groups and a list of all finite groups of order up to 100. +`Oscar.jl` brings in comprehensive functionality for computational group theory, including +support for **arbitrary finitely presented groups** (groups of the form `⟨X | S⟩`. `Oscar.jl` +supports the **direct product** operation between two or more arbitrary **general** groups, +including non-abelian groups such as `alternating_group`, `dihedral_group`, `symmetric_group`, +and even arbitrary finitely presented groups (e.g., `free_group`). This capability is not +available in `Hecke.jl`. The 2BGA codes discovered in [lin2024quantum](@cite) rely on direct +products of two or more *general* groups, which necessitate the use of `Oscar.direct_product`. + +The schematic below illustrates the limitations of `Hecke.direct_product` compared to +`Oscar.direct_product`: + +```@raw html +
+graph TB + root[Direct Product of Groups] + + root --> A[Hecke.direct_product] + root --> B[Oscar.direct_product] + + %% Hecke Branch + A --> A1[Supports mostly abelian groups and list of finite groups] + A1--> A2[abelian_group symmetric_group small_group] + A2 --> A3[C × C, C × S] + + %% Oscar Branch + B --> B1[Supports finite general groups, including non-abelian groups] + B1--> B2[alternating_group
dihedral_group
free_group
cyclic_group
permutation_group
quaternion_group
symmetric_group
abelian_group
small_group] + B2--> B3[A × C, A × D
D × C, D × D
F × F, F × A, F × D
F × S, F × C
C × C, C × S] +
+``` + +# Example + +The [[56, 28, 2]] abelian 2BGA code from Appendix C, Table II in [lin2024quantum](@cite) +can be constructed using the direct product of two cyclic groups. Specifically, the group +`C₂₈` of order `l = 28` can be represented as `C₁₄ × C₂`, where the first group has order +`m = 14` and the second group has order `n = 2`. + +```jldoctest directprod +julia> import Oscar: cyclic_group, small_group_identification, describe, order; # hide + +julia> import Hecke: gens, quo, group_algebra, GF, one, direct_product, sub; # hide + +julia> m = 14; n = 2; + +julia> C₁₄ = cyclic_group(m); + +julia> C₂ = cyclic_group(n); + +julia> G = direct_product(C₁₄, C₂); + +julia> GA = group_algebra(GF(2), G); + +julia> x, s = gens(GA)[1], gens(GA)[3]; + +julia> a = [one(GA), x^7]; + +julia> b = [one(GA), x^7, s, x^8, s * x^7, x]; + +julia> c = twobga_from_direct_product(a, b, GA); + +julia> order(G) +28 + +julia> code_n(c), code_k(c) +(56, 28) + +julia> describe(G), small_group_identification(G) +("C14 x C2", (28, 4)) +``` + +!!! note When using the direct product of two cyclic groups, it is essential to verify +the group presentation `Cₘ = ⟨x, s | xᵐ = s² = xsx⁻¹s⁻¹ = 1⟩` is satisfied, where the +order is `2m`. Ensure that the selected generators have the correct orders of `m = 14` +and `n = 2`, respectively. If the group presentation is not satisfied, the resulting +group algebra over `GF(2)` will not represent the intended group, `C₂₈ = C₁₄ × C₂`. In +addition, `Oscar.sub` can be used to determine if `H` is a subgroup of `G` and to +confirm that both `C₁₄` and `C₂` are subgroups of `C₂₈`. + +```jldoctest directprod +julia> order(gens(G)[1]) +14 + +julia> order(gens(G)[3]) +2 + +julia> x^14 == s^2 == x * s * x^-1 * s^-1 +true + +julia> H, _ = sub(G, [gens(G)[1], gens(G)[3]]); + +julia> H == G +true +``` +""" +function twobga_from_direct_product(a_elts::VectorDirectProductGroupElem, b_elts::VectorDirectProductGroupElem, F2G::DirectProductGroupAlgebra) + a = sum(F2G(x) for x in a_elts) + b = sum(F2G(x) for x in b_elts) + c = two_block_group_algebra_codes(a,b) + return c +end diff --git a/ext/QuantumCliffordOscarExt/group_presentation.jl b/ext/QuantumCliffordOscarExt/group_presentation.jl new file mode 100644 index 000000000..b6b586650 --- /dev/null +++ b/ext/QuantumCliffordOscarExt/group_presentation.jl @@ -0,0 +1,151 @@ +""" +# Specific Group Presentations + +For quantum error-correcting codes like the two-block group algebra (2BGA) code, designing specific +group presentations for both abelian and non-abelian groups is crucial. These presentations are essential +for constructing the group algebra of the 2BGA code for a given finite general group, `G`. + +Lin and Pryadko, in their seminal paper titled "Quantum Two-Block Group Algebra Codes" [lin2024quantum](@cite), +employ specific presentations that necessitate the use of `Oscar.free_group`. The diagram below distinguishes +between small groups (`Hecke/Oscar.small_group`) and finitely presented groups (`Oscar.free_group`) by highlighting +the existence of extra relations in their presentations. + +```@raw html +
+graph TD + A[Group Presentation ⟨S ∣ R⟩] --> B{Are there
extra relations?} + B -- No --> C[Small groups
Hecke/Oscar.small_group] + C --> D[Independent generators] + C --> E["Example:
⟨r, s ∣ s⁴, r⁹⟩"] + B -- Yes --> F[Finitely presented groups
Oscar.free_group] + F --> G[Defined by interactions] + F --> H["Example:
⟨r, s ∣ s⁴, r⁹, s⁻¹rsr⟩"] +
+``` + +# Example + +The [[96, 12, 10]] 2BGA code from Table I in [lin2024quantum](@cite) has the group presentation +`⟨r, s | s⁶ = r⁸ = r⁻¹srs = 1⟩` and a group structure of `C₂ × (C₃ ⋉ C₈)`. + +```jldoctest finitegrp +julia> import Oscar: free_group, small_group_identification, describe, order; # hide + +julia> import Hecke: gens, quo, group_algebra, GF, one; # hide + +julia> F = free_group(["r", "s"]); + +julia> r, s = gens(F); # generators + +julia> G, = quo(F, [s^6, r^8, r^(-1) * s * r * s]); # relations + +julia> GA = group_algebra(GF(2), G); + +julia> r, s = gens(G); + +julia> a = [one(G), r, s^3 * r^2, s^2 * r^3]; + +julia> b = [one(G), r, s^4 * r^6, s^5 * r^3]; + +julia> c = twobga_from_fp_group(a, b, GA); + +julia> order(G) +48 + +julia> code_n(c), code_k(c) +(96, 12) + +julia> describe(G), small_group_identification(G) +("C2 x (C3 : C8)", (48, 9)) +``` + +# Cyclic Groups + +Cyclic groups with specific group presentations, given by `Cₘ = ⟨x, s | xᵐ = s² = xsx⁻¹s⁻¹ = 1⟩`, +where the order is `2m`, are supported. + +To construct the group algebra for a cyclic group, specify the group presentation `⟨S | R⟩`, using +its generators `S` and defining relations `R`. + +# Example + +The [[56, 28, 2]] abelian 2BGA code from Appendix C, Table II in [lin2024quantum](@cite) is constructed using +the cyclic group `C₂₈ = C₁₄ × C₂`. + +```jldoctest finitegrp +julia> m = 14; + +julia> F = free_group(["x", "s"]); + +julia> x, s = gens(F); # generators + +julia> G, = quo(F, [x^m, s^2, x * s * x^-1 * s^-1]); # relations + +julia> GA = group_algebra(GF(2), G); + +julia> x, s = gens(G); + +julia> a = [one(G), x^7]; + +julia> b = [one(G), x^7, s, x^8, s * x^7, x]; + +julia> c = twobga_from_fp_group(a, b, GA); + +julia> order(G) +28 + +julia> code_n(c), code_k(c) +(56, 28) + +julia> describe(G), small_group_identification(G) +("C14 x C2", (28, 4)) +``` + +# Dihedral Groups + +Dihedral groups with specific group presentations, given by `Dₘ = ⟨r, s | rᵐ = s² = (rs)² = 1⟩`, +where the order is `2m`, are supported. + +To construct the group algebra for a dihedral group, specify the group presentation `⟨S | R⟩` +using its generators `S` and defining relations `R`. + +# Example + +The [[24, 8, 3]] 2BGA code from Appendix C, Table III in [lin2024quantum](@cite) is constructed +using the dihedral group `D₆ = C₆ ⋉ C₂`. + +```jldoctest finitegrp +julia> m = 6; + +julia> F = free_group(["r", "s"]); + +julia> r, s = gens(F); # generators + +julia> G, = quo(F, [r^m, s^2, (r*s)^2]); # relations + +julia> GA = group_algebra(GF(2), G); + +julia> r, s = gens(G); + +julia> a = [one(G), r^4]; + +julia> b = [one(G), s*r^4, r^3, r^4, s*r^2, r]; + +julia> c = twobga_from_fp_group(a, b, GA); + +julia> order(G) +12 + +julia> code_n(c), code_k(c) +(24, 8) + +julia> describe(G), small_group_identification(G) +("D12", (12, 4)) +``` +""" +function twobga_from_fp_group(a_elts::VectorFPGroupElem, b_elts::VectorFPGroupElem, F2G::FqFieldFPGroupAlgebra) + a = sum(F2G(x) for x in a_elts) + b = sum(F2G(x) for x in b_elts) + c = two_block_group_algebra_codes(a,b) + return c +end diff --git a/ext/QuantumCliffordOscarExt/types.jl b/ext/QuantumCliffordOscarExt/types.jl new file mode 100644 index 000000000..47b9ed77c --- /dev/null +++ b/ext/QuantumCliffordOscarExt/types.jl @@ -0,0 +1,7 @@ +const VectorFPGroupElem = Vector{FPGroupElem} + +const VectorDirectProductGroupElem = Vector{GroupAlgebraElem{FqFieldElem, GroupAlgebra{FqFieldElem, DirectProductGroup, BasicGAPGroupElem{DirectProductGroup}}}} + +const FqFieldFPGroupAlgebra = GroupAlgebra{FqFieldElem, FPGroup, FPGroupElem} + +const DirectProductGroupAlgebra = GroupAlgebra{FqFieldElem, DirectProductGroup, BasicGAPGroupElem{DirectProductGroup}} diff --git a/src/ecc/ECC.jl b/src/ecc/ECC.jl index 231816318..ce68c9ff8 100644 --- a/src/ecc/ECC.jl +++ b/src/ecc/ECC.jl @@ -29,7 +29,7 @@ export parity_checks, parity_checks_x, parity_checks_z, iscss, Shor9, Steane7, Cleve8, Perfect5, Bitflip3, Toric, Gottesman, Surface, Concat, CircuitCode, QuantumReedMuller, LPCode, two_block_group_algebra_codes, generalized_bicycle_codes, bicycle_codes, - haah_cubic_codes, + haah_cubic_codes, twobga_from_fp_group, twobga_from_direct_product, random_brickwork_circuit_code, random_all_to_all_circuit_code, evaluate_decoder, CommutationCheckECCSetup, NaiveSyndromeECCSetup, ShorSyndromeECCSetup, @@ -393,4 +393,10 @@ include("codes/quantumreedmuller.jl") include("codes/classical/lifted.jl") include("codes/lifted_product.jl") +# group presentation +include("codes/twobga_ext/group_presentation.jl") + +# direct product +include("codes/twobga_ext/direct_product.jl") + end #module diff --git a/src/ecc/codes/twobga_ext/direct_product.jl b/src/ecc/codes/twobga_ext/direct_product.jl new file mode 100644 index 000000000..0105c63e4 --- /dev/null +++ b/src/ecc/codes/twobga_ext/direct_product.jl @@ -0,0 +1,11 @@ +""" +The method `twobga_from_direct_product` constructs the direct product `G₁ × G₂ × … × Gₙ` of multiple groups, where each `Gᵢ` represents a group in the product. + +Implemented as a package extension with Oscar. Check the [QuantumClifford documentation](http://qc.quantumsavory.org/stable/ECC_API/) for more details on that extension.""" +function twobga_from_direct_product(args...) + ext = Base.get_extension(QuantumClifford, :QuantumCliffordOscarExt) + if isnothing(ext) + throw("The `twobga_from_direct_product` depends on the package `Oscar` but you have not installed or imported it yet. Immediately after you import `Oscar`, the `twobga_from_direct_product` will be available.") + end + return ext.twobga_from_direct_product(args...) +end diff --git a/src/ecc/codes/twobga_ext/group_presentation.jl b/src/ecc/codes/twobga_ext/group_presentation.jl new file mode 100644 index 000000000..2b7b8e7ce --- /dev/null +++ b/src/ecc/codes/twobga_ext/group_presentation.jl @@ -0,0 +1,11 @@ +""" +The method `twobga_from_fp_group` provides functionality of forming group algebra via group presentation, extending the capabilities of 2BGA codes. + +Implemented as a package extension with Oscar. Check the [QuantumClifford documentation](http://qc.quantumsavory.org/stable/ECC_API/) for more details on that extension.""" +function twobga_from_fp_group(args...) + ext = Base.get_extension(QuantumClifford, :QuantumCliffordOscarExt) + if isnothing(ext) + throw("The `twobga_from_fp_group` depends on the package `Oscar` but you have not installed or imported it yet. Immediately after you import `Oscar`, the `twobga_from_fp_group` will be available.") + end + return ext.twobga_from_fp_group(args...) +end diff --git a/test/test_ecc_base.jl b/test/test_ecc_base.jl index 7c1d12ef5..10d6cd967 100644 --- a/test/test_ecc_base.jl +++ b/test/test_ecc_base.jl @@ -6,7 +6,7 @@ using InteractiveUtils import Nemo: GF import LinearAlgebra -import Hecke: group_algebra, abelian_group, gens +import Hecke: group_algebra, abelian_group, gens, quo, one # generate instances of all implemented codes to make sure nothing skips being checked @@ -147,6 +147,85 @@ bb3 = two_block_group_algebra_codes(A,B) test_bb_codes = [bb1, bb2, bb3] +# Add some codes that require Oscar, hence do not work on Windows + +test_twobga_codes = [] + +@static if !Sys.iswindows() + try + import Oscar: free_group, cyclic_group, direct_product + @info "Add group theoretic codes requiring Oscar" + # [[72, 8, 9]] 2BGA code taken from Table I Block 1 of [lin2024quantum](@cite) + F = free_group(["r"]) + r = gens(F)[1] + G, = quo(F, [r^36]) + GA = group_algebra(GF(2), G) + r = gens(G)[1] + a = [one(G), r^28] + b = [one(G), r, r^18, r^12, r^29, r^14] + t1b1 = twobga_from_fp_group(a, b, GA) + + # [[54, 6, 9]] 2BGA code taken from Table I Block 3 of [lin2024quantum](@cite) + F = free_group(["r"]) + r = gens(F)[1] + G, = quo(F, [r^27]) + GA = group_algebra(GF(2), G) + r = gens(G)[1] + a = [one(G), r, r^3, r^7] + b = [one(G), r, r^12, r^19] + t1b3 = twobga_from_fp_group(a, b, GA) + + # [[16, 4, 4]] 2BGA taken from Appendix C, Table II of [lin2024quantum](@cite) + F = free_group(["x", "s"]) + x, s = gens(F) + G, = quo(F, [x^4, s^2, x * s * x^-1 * s^-1]) + GA = group_algebra(GF(2), G) + x, s = gens(G) + a = [one(G), x] + b = [one(G), x, s, x^2, s*x, x^3] + tb21 = twobga_from_fp_group(a, b, GA) + + # [[32, 8, 4]] 2BGA taken from Appendix C, Table II of [lin2024quantum](@cite) + F = free_group(["x", "s"]) + x, s = gens(F) + G, = quo(F, [x^8, s^2, x * s * x^-1 * s^-1]) + GA = group_algebra(GF(2), G) + x, s = gens(G) + a = [one(G), x^6] + b = [one(G), s * x^7, s * x^4, x^6, s * x^5, s * x^2] + tb22 = twobga_from_fp_group(a, b, GA) + + # Examples of Abelian 2BGA codes constructed from the Direct Product of two cyclic groups, denoted as `C₂ₘ = Cₘ × C₂`. + # [[56, 8, 7]] 2BGA taken from Appendix C, Table II of [lin2024quantum](@cite) + m = 14; n = 2 + C₁₄ = cyclic_group(m) + C₂ = cyclic_group(n) + G = direct_product(C₁₄, C₂) + GA = group_algebra(GF(2), G) + x, s = gens(GA)[1], gens(GA)[3] + a = [one(GA), x^8] + b = [one(GA), x^7, s, x^8, x^9, s * x^4] + dprod1 = twobga_from_direct_product(a, b, GA) + + # [[48, 24, 2]] 2BGA taken from Appendix C, Table II of [lin2024quantum](@cite) + m = 12; n = 2 + C₁₂ = cyclic_group(m) + C₂ = cyclic_group(n) + G = direct_product(C₁₂, C₂) + GA = group_algebra(GF(2), G) + x, s = gens(GA)[1], gens(GA)[4] + a = [one(GA), s * x^6] + b = [one(GA), x^3, s * x^6, x^4, s * x^9, s * x^10] + dprod2 = twobga_from_direct_product(a, b, GA) + + append!(test_twobga_codes, [t1b1, t1b3, tb21, tb22, dprod1, dprod2]) + catch e + @warn(e) + end +end + +@info "length(test_twobga_codes): $(length(test_twobga_codes))" + const code_instance_args = Dict( :Toric => [(3,3), (4,4), (3,6), (4,3), (5,5)], :Surface => [(3,3), (4,4), (3,6), (4,3), (5,5)], @@ -154,7 +233,7 @@ const code_instance_args = Dict( :CSS => (c -> (parity_checks_x(c), parity_checks_z(c))).([Shor9(), Steane7(), Toric(4, 4)]), :Concat => [(Perfect5(), Perfect5()), (Perfect5(), Steane7()), (Steane7(), Cleve8()), (Toric(2, 2), Shor9())], :CircuitCode => random_circuit_code_args, - :LPCode => (c -> (c.A, c.B)).(vcat(LP04, LP118, test_gb_codes, test_bb_codes, test_mbb_codes, test_coprimeBB_codes, test_hcubic_codes, other_lifted_product_codes)), + :LPCode => (c -> (c.A, c.B)).(vcat(LP04, LP118, test_gb_codes, test_bb_codes, test_mbb_codes, test_coprimeBB_codes, test_hcubic_codes, test_twobga_codes, other_lifted_product_codes)), :QuantumReedMuller => [3, 4, 5] )