-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
117 lines (93 loc) · 4.25 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from transformers import AutoTokenizer,AutoModelForCausalLM
from tqdm import tqdm
import json
import torch
import argparse
import os
from instruction_following_check.check import check_correctness_instruction_following
from math_check.check import check_correctness_math
from code_check.check import check_correctness_code
from code_check.post_process import process_text
def get_examples(task,split):
test_examples = []
with open(f'./data/{task}_{split}.jsonl') as f:
for line in f.readlines():
test_examples.append(json.loads(line))
return test_examples
def generate_answer(model, tokenizer, question, sampling_times):
results = []
prompt = f'{question}'
messages = [
{"role": "user", "content": prompt}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
toks = tokenizer([prompt], padding=False, return_tensors="pt").to(model.device)
orig_len = toks["input_ids"].shape[1]
for _ in range(sampling_times):
with torch.no_grad():
out = model.generate(
**toks, max_new_tokens=1500, do_sample=True
)
text = tokenizer.decode(out[0,orig_len:],skip_special_tokens=True)
results.append(text)
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str)
parser.add_argument("--task", type=str)
parser.add_argument("--model_path", type=str, default='')
parser.add_argument("--sampling_times", type=int, default=20)
parser.add_argument("--device", type=str, default='auto')
parser.add_argument("--debug",action='store_true')
parser.add_argument("--force",action='store_true')
args = parser.parse_args()
model_name = args.model_name.split("/")[-1]
model_path = args.model_path if args.model_path!='' else args.model_name
assert args.task in ['code','math','instruction_following'], 'Only \'code\', \'math\', \'instruction_following\' are supported for args.task'
check_correctness = eval(f'check_correctness_{args.task}')
if args.device!='auto':
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.float16,trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,trust_remote_code=True)
device = torch.device(args.device)
model.to(device)
else:
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.float16,device_map='auto',trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,trust_remote_code=True)
print("Model Loaded")
for split in ['easy','hard']:
test_examples = get_examples(args.task, split)
if args.debug:
test_examples = test_examples[:5]
output_path = f"./log/{model_name.replace('.','_')}_{args.task}_{split}{'_debug' if args.debug else ''}.jsonl"
if not os.path.exists(output_path):
f = open(output_path,'w')
f.close()
if args.force:
write_mode = 'w'
else:
write_mode = 'a'
processed_keys = set()
with open(output_path, 'r', encoding='utf-8') as reader:
for line in reader:
data = json.loads(line)
processed_keys.add(data['key'])
test_examples = [d for d in test_examples if d['key'] not in processed_keys]
with open(output_path, write_mode, encoding='utf-8') as writer:
for test_example in tqdm(test_examples,desc=f'{args.task} {split}'):
if args.debug:
sampling_times=1
else:
sampling_times=args.sampling_times
texts = generate_answer(model, tokenizer, test_example['question'], sampling_times)
for text in texts:
if args.task == 'code':
text = process_text(text,test_example['entry_point'])
passed = check_correctness(test_example,text)
tmp = {'key':test_example['key'],'question':test_example['question'],"response":text,'passed':passed}
writer.write(json.dumps(tmp) + '\n')
if __name__ == "__main__":
main()