-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
491 lines (395 loc) · 16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
import pathlib
import random
import shutil
import time
import json
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.tensorboard import SummaryWriter
from utils.logging import AverageMeter, ProgressMeter
from utils.net_utils import save_checkpoint, get_lr, LabelSmoothing
from utils.schedulers import get_policy
from utils.conv_type import STRConv
from utils.conv_type import sparseFunction
from args import args
from trainer import train, validate
import data
import models
def main():
print(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Simply call main_worker function
main_worker(args)
def main_worker(args):
args.gpu = None
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model and optimizer
model = get_model(args)
model = set_gpu(args, model)
# Set up directories
run_base_dir, ckpt_base_dir, log_base_dir = get_directories(args)
# Loading pretrained model
if args.pretrained:
pretrained(args, model)
# Saving a DenseConv (nn.Conv2d) compatible model
if args.dense_conv_model:
print(f"==> DenseConv compatible model, saving at {ckpt_base_dir / 'model_best.pth'}")
save_checkpoint(
{
"epoch": 0,
"arch": args.arch,
"state_dict": model.state_dict(),
},
True,
filename=ckpt_base_dir / f"epoch_pretrained.state",
save=True,
)
return
optimizer = get_optimizer(args, model)
data = get_dataset(args)
lr_policy = get_policy(args.lr_policy)(optimizer, args)
if args.label_smoothing is None:
criterion = nn.CrossEntropyLoss().cuda()
else:
criterion = LabelSmoothing(smoothing=args.label_smoothing)
# optionally resume from a checkpoint
best_acc1 = 0.0
best_acc5 = 0.0
best_train_acc1 = 0.0
best_train_acc5 = 0.0
if args.resume:
best_acc1 = resume(args, model, optimizer)
# Evaulation of a model
if args.evaluate:
acc1, acc5 = validate(
data.val_loader, model, criterion, args, writer=None, epoch=args.start_epoch
)
return
writer = SummaryWriter(log_dir=log_base_dir)
epoch_time = AverageMeter("epoch_time", ":.4f", write_avg=False)
validation_time = AverageMeter("validation_time", ":.4f", write_avg=False)
train_time = AverageMeter("train_time", ":.4f", write_avg=False)
progress_overall = ProgressMeter(
1, [epoch_time, validation_time, train_time], prefix="Overall Timing"
)
end_epoch = time.time()
args.start_epoch = args.start_epoch or 0
acc1 = None
# Save the initial state
save_checkpoint(
{
"epoch": 0,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"best_acc5": best_acc5,
"best_train_acc1": best_train_acc1,
"best_train_acc5": best_train_acc5,
"optimizer": optimizer.state_dict(),
"curr_acc1": acc1 if acc1 else "Not evaluated",
},
False,
filename=ckpt_base_dir / f"initial.state",
save=False,
)
# Start training
for epoch in range(args.start_epoch, args.epochs):
lr_policy(epoch, iteration=None)
cur_lr = get_lr(optimizer)
# Gradual pruning in GMP experiments
if args.conv_type == "GMPConv" and epoch >= args.init_prune_epoch and epoch <= args.final_prune_epoch:
total_prune_epochs = args.final_prune_epoch - args.init_prune_epoch + 1
for n, m in model.named_modules():
if hasattr(m, 'set_curr_prune_rate'):
prune_decay = (1 - ((epoch - args.init_prune_epoch)/total_prune_epochs))**3
curr_prune_rate = m.prune_rate - (m.prune_rate*prune_decay)
m.set_curr_prune_rate(curr_prune_rate)
# train for one epoch
start_train = time.time()
train_acc1, train_acc5 = train(
data.train_loader, model, criterion, optimizer, epoch, args, writer=writer
)
train_time.update((time.time() - start_train) / 60)
# evaluate on validation set
start_validation = time.time()
acc1, acc5 = validate(data.val_loader, model, criterion, args, writer, epoch)
validation_time.update((time.time() - start_validation) / 60)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
best_acc5 = max(acc5, best_acc5)
best_train_acc1 = max(train_acc1, best_train_acc1)
best_train_acc5 = max(train_acc5, best_train_acc5)
save = ((epoch % args.save_every) == 0) and args.save_every > 0
if is_best or save or epoch == args.epochs - 1:
if is_best:
print(f"==> New best, saving at {ckpt_base_dir / 'model_best.pth'}")
save_checkpoint(
{
"epoch": epoch + 1,
"arch": args.arch,
"state_dict": model.state_dict(),
"best_acc1": best_acc1,
"best_acc5": best_acc5,
"best_train_acc1": best_train_acc1,
"best_train_acc5": best_train_acc5,
"optimizer": optimizer.state_dict(),
"curr_acc1": acc1,
"curr_acc5": acc5,
},
is_best,
filename=ckpt_base_dir / f"epoch_{epoch}.state",
save=save,
)
epoch_time.update((time.time() - end_epoch) / 60)
progress_overall.display(epoch)
progress_overall.write_to_tensorboard(
writer, prefix="diagnostics", global_step=epoch
)
writer.add_scalar("test/lr", cur_lr, epoch)
end_epoch = time.time()
# Storing sparsity and threshold statistics for STRConv models
if args.conv_type == "STRConv":
count = 0
sum_sparse = 0.0
for n, m in model.named_modules():
if isinstance(m, STRConv):
sparsity, total_params, thresh = m.getSparsity()
writer.add_scalar("sparsity/{}".format(n), sparsity, epoch)
writer.add_scalar("thresh/{}".format(n), thresh, epoch)
sum_sparse += int(((100 - sparsity) / 100) * total_params)
count += total_params
total_sparsity = 100 - (100 * sum_sparse / count)
writer.add_scalar("sparsity/total", total_sparsity, epoch)
writer.add_scalar("test/lr", cur_lr, epoch)
end_epoch = time.time()
write_result_to_csv(
best_acc1=best_acc1,
best_acc5=best_acc5,
best_train_acc1=best_train_acc1,
best_train_acc5=best_train_acc5,
prune_rate=args.prune_rate,
curr_acc1=acc1,
curr_acc5=acc5,
base_config=args.config,
name=args.name,
)
if args.conv_type == "STRConv":
json_data = {}
json_thres = {}
for n, m in model.named_modules():
if isinstance(m, STRConv):
sparsity = m.getSparsity()
json_data[n] = sparsity[0]
sum_sparse += int(((100 - sparsity[0]) / 100) * sparsity[1])
count += sparsity[1]
json_thres[n] = sparsity[2]
json_data["total"] = 100 - (100 * sum_sparse / count)
if not os.path.exists("runs/layerwise_sparsity"):
os.mkdir("runs/layerwise_sparsity")
if not os.path.exists("runs/layerwise_threshold"):
os.mkdir("runs/layerwise_threshold")
with open("runs/layerwise_sparsity/{}.json".format(args.name), "w") as f:
json.dump(json_data, f)
with open("runs/layerwise_threshold/{}.json".format(args.name), "w") as f:
json.dump(json_thres, f)
def set_gpu(args, model):
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
print(f"=> Parallelizing on {args.multigpu} gpus")
torch.cuda.set_device(args.multigpu[0])
args.gpu = args.multigpu[0]
model = torch.nn.DataParallel(model, device_ids=args.multigpu).cuda(
args.multigpu[0]
)
cudnn.benchmark = True
return model
def resume(args, model, optimizer):
if os.path.isfile(args.resume):
print(f"=> Loading checkpoint '{args.resume}'")
checkpoint = torch.load(args.resume)
if args.start_epoch is None:
print(f"=> Setting new start epoch at {checkpoint['epoch']}")
args.start_epoch = checkpoint["epoch"]
best_acc1 = checkpoint["best_acc1"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
print(f"=> Loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
return best_acc1
else:
print(f"=> No checkpoint found at '{args.resume}'")
def pretrained(args, model):
if os.path.isfile(args.pretrained):
print("=> loading pretrained weights from '{}'".format(args.pretrained))
pretrained = torch.load(
args.pretrained,
map_location=torch.device("cuda:{}".format(args.multigpu[0])),
)["state_dict"]
model_state_dict = model.state_dict()
if not args.ignore_pretrained_weights:
pretrained_final = {
k: v
for k, v in pretrained.items()
if (k in model_state_dict and v.size() == model_state_dict[k].size())
}
if args.conv_type != "STRConv":
for k, v in pretrained.items():
if 'sparseThreshold' in k:
wkey = k.split('sparse')[0] + 'weight'
weight = pretrained[wkey]
pretrained_final[wkey] = sparseFunction(weight, v)
model_state_dict.update(pretrained_final)
model.load_state_dict(model_state_dict)
# Using the budgets of STR models for other models like DNW and GMP
if args.use_budget:
budget = {}
for k, v in pretrained.items():
if 'sparseThreshold' in k:
wkey = k.split('sparse')[0] + 'weight'
weight = pretrained[wkey]
sparse_weight = sparseFunction(weight, v)
budget[wkey] = (sparse_weight.abs() > 0).float().mean().item()
for n, m in model.named_modules():
if hasattr(m, 'set_prune_rate'):
pr = 1 - budget[n + '.weight']
m.set_prune_rate(pr)
print('set prune rate', n, pr)
else:
print("=> no pretrained weights found at '{}'".format(args.pretrained))
def get_dataset(args):
print(f"=> Getting {args.set} dataset")
dataset = getattr(data, args.set)(args)
return dataset
def get_model(args):
if args.first_layer_dense:
args.first_layer_type = "DenseConv"
print("=> Creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
print(f"=> Num model params {sum(p.numel() for p in model.parameters())}")
# applying sparsity to the network
if args.conv_type != "DenseConv":
print(f"==> Setting prune rate of network to {args.prune_rate}")
def _sparsity(m):
if hasattr(m, "set_prune_rate"):
m.set_prune_rate(args.prune_rate)
model.apply(_sparsity)
# freezing the weights if we are only doing mask training
if args.freeze_weights:
print(f"=> Freezing model weights")
def _freeze(m):
if hasattr(m, "mask"):
m.weight.requires_grad = False
if hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = False
model.apply(_freeze)
return model
def get_optimizer(args, model):
for n, v in model.named_parameters():
if v.requires_grad:
pass #print("<DEBUG> gradient to", n)
if not v.requires_grad:
pass #print("<DEBUG> no gradient to", n)
if args.optimizer == "sgd":
parameters = list(model.named_parameters())
sparse_thresh = [v for n, v in parameters if ("sparseThreshold" in n) and v.requires_grad]
bn_params = [v for n, v in parameters if ("bn" in n) and v.requires_grad]
# rest_params = [v for n, v in parameters if ("bn" not in n) and ('sparseThreshold' not in n) and v.requires_grad]
rest_params = [v for n, v in parameters if ("bn" not in n) and ("sparseThreshold" not in n) and v.requires_grad]
optimizer = torch.optim.SGD(
[
{
"params": bn_params,
"weight_decay": 0 if args.no_bn_decay else args.weight_decay,
},
{
"params": sparse_thresh,
"weight_decay": args.st_decay if args.st_decay is not None else args.weight_decay,
},
{"params": rest_params, "weight_decay": args.weight_decay},
],
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov,
)
elif args.optimizer == "adam":
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr
)
return optimizer
def _run_dir_exists(run_base_dir):
log_base_dir = run_base_dir / "logs"
ckpt_base_dir = run_base_dir / "checkpoints"
return log_base_dir.exists() or ckpt_base_dir.exists()
def get_directories(args):
if args.config is None or args.name is None:
raise ValueError("Must have name and config")
config = pathlib.Path(args.config).stem
if args.log_dir is None:
run_base_dir = pathlib.Path(
f"runs/{config}/{args.name}/prune_rate={args.prune_rate}"
)
else:
run_base_dir = pathlib.Path(
f"{args.log_dir}/{config}/{args.name}/prune_rate={args.prune_rate}"
)
if args.width_mult != 1.0:
run_base_dir = run_base_dir / "width_mult={}".format(str(args.width_mult))
if _run_dir_exists(run_base_dir):
rep_count = 0
while _run_dir_exists(run_base_dir / str(rep_count)):
rep_count += 1
run_base_dir = run_base_dir / str(rep_count)
log_base_dir = run_base_dir / "logs"
ckpt_base_dir = run_base_dir / "checkpoints"
if not run_base_dir.exists():
os.makedirs(run_base_dir)
(run_base_dir / "settings.txt").write_text(str(args))
return run_base_dir, ckpt_base_dir, log_base_dir
def write_result_to_csv(**kwargs):
results = pathlib.Path("runs") / "results.csv"
if not results.exists():
results.write_text(
"Date Finished, "
"Base Config, "
"Name, "
"Prune Rate, "
"Current Val Top 1, "
"Current Val Top 5, "
"Best Val Top 1, "
"Best Val Top 5, "
"Best Train Top 1, "
"Best Train Top 5\n"
)
now = time.strftime("%m-%d-%y_%H:%M:%S")
with open(results, "a+") as f:
f.write(
(
"{now}, "
"{base_config}, "
"{name}, "
"{prune_rate}, "
"{curr_acc1:.02f}, "
"{curr_acc5:.02f}, "
"{best_acc1:.02f}, "
"{best_acc5:.02f}, "
"{best_train_acc1:.02f}, "
"{best_train_acc5:.02f}\n"
).format(now=now, **kwargs)
)
if __name__ == "__main__":
main()