-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPOTATO_preprocessing.py
110 lines (84 loc) · 4.07 KB
/
POTATO_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""Copyright 2021 Helmholtz-Zentrum für Infektionsforschung GmbH"""
from scipy import signal
import numpy as np
def preprocess_RAW(Force, Distance, input_settings, input_format):
if input_format['Augment'] == 1 and input_settings['augment_factor'] != '':
# Augment data
new_f = []
new_d = []
factor = int(input_settings['augment_factor'])
for line in range(len(Force) - 1):
f = Force[line]
d = Distance[line]
new_f.append(f)
new_d.append(d)
f_next = Force[line + 1]
d_next = Distance[line + 1]
delta_f = abs(f_next - f)
delta_d = abs(d_next - d)
for point in range(1, factor):
mu = 0
sigma_f = (1.5 * delta_f) / 3
sigma_d = (1.5 * delta_d) / 3
nf = np.random.normal(mu, sigma_f)
nd = np.random.normal(mu, sigma_d)
new_point_f = f + ((point + nf) / factor) * delta_f
new_point_d = d + ((point + nd) / factor) * delta_d
new_f.append(new_point_f)
new_d.append(new_point_d)
Force = np.array(new_f)
Distance = np.array(new_d)
if input_format['preprocess'] == 1:
# Downsample
Force_ds = Force[::input_settings['downsample_value']]
Distance_ds = Distance[::input_settings['downsample_value']]
# Filter
b, a = signal.butter(input_settings['filter_degree'], input_settings['filter_cut_off'])
filteredForce = signal.filtfilt(b, a, Force_ds)
filteredDistance = signal.filtfilt(b, a, Distance_ds)
Force_Distance = np.column_stack((filteredForce, filteredDistance * 1000))
Force_Distance_um = np.column_stack((filteredForce, filteredDistance))
else:
Force_Distance = np.column_stack((Force, Distance * 1000))
Force_Distance_um = np.column_stack((Force, Distance))
return Force_Distance, Force_Distance_um
# creates a dataset from min force threshold to max force value
def trim_data(FD_data, F_min):
F_trimmed = np.array([])
PD_trimmed = np.array([])
F_low = np.array([])
F_max = np.where(FD_data[:, 0] == max(FD_data[:, 0]))
fi = F_max[0][0]
while FD_data[fi, 0] > F_min and fi > 0:
fi = fi - 1
if not fi == F_max[0][0]:
F_trimmed = FD_data[fi:F_max[0][0], 0]
PD_trimmed = FD_data[fi:F_max[0][0], 1]
F_low = FD_data[:fi, 0]
elif fi == 0:
print('Could not trim this curve, data below minimum force threshold!')
return F_trimmed, PD_trimmed, F_low
# creates derivatives for Force and Distance of the trimmed datasets
def create_derivative(input_settings, Frequency_value, F_trimmed, PD_trimmed, F_low):
d_time = 1 / Frequency_value * input_settings['downsample_value'] * input_settings['step_d']
x = input_settings['step_d']
derivative_list = []
while x < len(F_trimmed):
if PD_trimmed[0] < PD_trimmed[-1]:
F_value = (F_trimmed[x] + F_trimmed[x - input_settings['step_d']]) / 2
PD_value = (PD_trimmed[x] + PD_trimmed[x - input_settings['step_d']]) / 2
delta_PD = PD_trimmed[x] - PD_trimmed[x - input_settings['step_d']]
delta_F = F_trimmed[x] - F_trimmed[x - input_settings['step_d']]
F_dt = delta_F / d_time
PD_dt = delta_PD / d_time
else:
F_value = (F_trimmed[x] + F_trimmed[(x - input_settings['step_d'])]) / 2
PD_value = (PD_trimmed[x] + PD_trimmed[(x - input_settings['step_d'])]) / 2
delta_PD = PD_trimmed[x] - PD_trimmed[(x - input_settings['step_d'])]
delta_F = F_trimmed[x] - F_trimmed[(x - input_settings['step_d'])]
F_dt = (delta_F / d_time) * (-1)
PD_dt = (delta_PD / d_time) * (-1)
derivative_list.append([F_value, PD_value, F_dt, PD_dt])
x = x + input_settings['step_d']
derivative_array = np.array(derivative_list)
return derivative_array