forked from NVIDIA-AI-Blueprints/vulnerability-analysis
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcve_summary_node.py
93 lines (72 loc) · 3.84 KB
/
cve_summary_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# SPDX-FileCopyrightText: Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from morpheus_llm.llm import LLMLambdaNode
from morpheus_llm.llm import LLMNode
from morpheus_llm.llm.nodes.llm_generate_node import LLMGenerateNode
from morpheus_llm.llm.nodes.prompt_template_node import PromptTemplateNode
from morpheus_llm.llm.services.llm_service import LLMClient
from ..utils.string_utils import get_checklist_item_string
logger = logging.getLogger(__name__)
DEFAULT_SUMMARY_PROMPT = """Summarize the exploitability investigation results of a Common Vulnerabilities and Exposures (CVE) \
based on the provided Checklist and Findings. Write a concise paragraph focusing only on checklist items with \
definitive answers. Begin your response by clearly stating whether the CVE is exploitable. Disregard any ambiguous \
checklist items.
Checklist and Findings:
{{response}}"""
class CVESummaryNode(LLMNode):
"""
A node to summarize the results of the checklist responses.
"""
def __init__(self, *, prompt: str, llm_client: LLMClient):
"""
Initialize the CVESummaryNode with a selected model.
Parameters
----------
llm_client : LLMClient
The LLM client to use for generating the summary.
"""
super().__init__()
async def build_summary_output(checklist_inputs: list[list[str]],
checklist_outputs: list[list[str]],
intermediate_steps: list[list[list]]) -> list[list[dict]]:
summary_output = []
for check_in, check_out, steps in zip(checklist_inputs, checklist_outputs, intermediate_steps):
summary_output.append([{
"question": q, "response": r, "intermediate_steps": s
} for q, r, s in zip(check_in, check_out, steps)]) # yapf: disable
return summary_output
# Build the output for the checklist as a list of dictionaries
self.add_node("checklist",
inputs=["checklist_inputs", "checklist_outputs", "intermediate_steps"],
node=LLMLambdaNode(build_summary_output),
is_output=True)
# Concatenate the output of the checklist responses into a single string
async def concat_checklist_responses(agent_q_and_a: list[list[dict]]) -> list[str]:
concatted_responses = []
for checklist in agent_q_and_a:
checklist_str = '\n'.join([get_checklist_item_string(i + 1, item) for i, item in enumerate(checklist)])
concatted_responses.append(checklist_str)
return concatted_responses
self.add_node('results', inputs=['/checklist'], node=LLMLambdaNode(concat_checklist_responses))
summary_prompt = prompt or DEFAULT_SUMMARY_PROMPT
self.add_node('summary_prompt',
inputs=[('/results', 'response')],
node=PromptTemplateNode(template=summary_prompt, template_format='jinja'))
# Generate a summary from the combined checklist responses
self.add_node("summary",
inputs=["/summary_prompt"],
node=LLMGenerateNode(llm_client=llm_client),
is_output=True)