diff --git a/docs/dev/onnx_operators.rst b/docs/dev/onnx_operators.rst index 1ac83dabd3b..9bfc87108fb 100644 --- a/docs/dev/onnx_operators.rst +++ b/docs/dev/onnx_operators.rst @@ -210,7 +210,14 @@ Operator Support Matrix | | | | shape is not | | | | | supported | +--------------------------+-----------+-----------------+------------------------------+ -| Einsum | 👷 | 👷 | | +| Einsum | ✅ | Any | more than 1 diagonal per | +| | | | input is not supported | +| | | | e.g. ``iijj->ij`` | +| | | | | +| | | | batch diagonal where batches | +| | | | are not the leading dims is | +| | | | not supported | +| | | | e.g. ``ii...->i...`` | +--------------------------+-----------+-----------------+------------------------------+ | Elu | ✅ | FP8, FP16, | | | | | FP32, FP64 | | diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 62197380cc4..876f69d2595 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -67,6 +67,7 @@ add_library(migraphx instruction.cpp json.cpp layout_nhwc.cpp + lexing.cpp load_save.cpp make_op.cpp memory_coloring.cpp diff --git a/src/convert_to_json.cpp b/src/convert_to_json.cpp index f3872fd22e0..0dd823d1eb7 100644 --- a/src/convert_to_json.cpp +++ b/src/convert_to_json.cpp @@ -1,7 +1,7 @@ /* * The MIT License (MIT) * - * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal @@ -23,66 +23,17 @@ */ #include #include -#include -#include #include #include #include #include #include +#include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { -using token = std::pair; -using lexer = std::function; - -template -auto lex_while(P p) -{ - return [=](const char* start, const char* end) { - return std::find_if(start, end, [&](char c) { return not p(c); }); - }; -} - -template -auto lex_if(P p) -{ - return [=](const char* start, const char*) { - if(p(*start)) - return start + 1; - return start; - }; -} - -std::vector tokenize(const char* start, const char* end, const std::vector& lexers) -{ - std::vector result; - while(start != end) - { - bool error = true; - for(const auto& l : lexers) - { - const auto* next = l(start, end); - if(next != start) - { - result.emplace_back(start, next); - start = next; - error = false; - break; - } - } - - if(error) - { - MIGRAPHX_THROW("TOKENIZE: no token found!"); - } - } - - return result; -} - -std::vector json_tokenize(const std::string& s) +std::vector json_tokenize(const std::string& s) { std::vector lexers; @@ -133,7 +84,7 @@ std::string convert_to_json(const std::string& str) for(auto& token : tokens) { - std::string s(token.first, token.second); + std::string s(token); if(starts_with(s, "#") or starts_with(s, "//")) continue; if(std::isalpha(s.front()) != 0 and diff --git a/src/include/migraphx/lexing.hpp b/src/include/migraphx/lexing.hpp new file mode 100644 index 00000000000..61d34b8e0c6 --- /dev/null +++ b/src/include/migraphx/lexing.hpp @@ -0,0 +1,64 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ +#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_LEXING_HPP +#define MIGRAPHX_GUARD_MIGRAPHLIB_LEXING_HPP + +#include +#include +#include +#include + +namespace migraphx { +inline namespace MIGRAPHX_INLINE_NS { + +using lexer = std::function; + +template +inline auto lex_while(P p) +{ + return [=](const char* start, const char* end) { + return std::find_if(start, end, [&](char c) { return not p(c); }); + }; +} + +template +inline auto lex_if(P p) +{ + return [=](const char* start, const char*) { + if(p(*start)) + return start + 1; + return start; + }; +} + +MIGRAPHX_EXPORT std::function +lex_equal(const std::string& s); + +MIGRAPHX_EXPORT std::vector +tokenize(const char* start, const char* end, const std::vector& lexers); + +} // namespace MIGRAPHX_INLINE_NS +} // namespace migraphx + +#endif diff --git a/src/lexing.cpp b/src/lexing.cpp new file mode 100644 index 00000000000..d17de024270 --- /dev/null +++ b/src/lexing.cpp @@ -0,0 +1,71 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include + +namespace migraphx { +inline namespace MIGRAPHX_INLINE_NS { + +std::function lex_equal(const std::string& s) +{ + return [=](const char* start, const char* end) { + auto n = end - start; + if(n < s.size()) + return start; + if(std::equal(start, start + s.size(), s.data())) + return start + s.size(); + return start; + }; +} + +std::vector +tokenize(const char* start, const char* end, const std::vector& lexers) +{ + std::vector result; + while(start != end) + { + bool error = true; + for(const auto& l : lexers) + { + const auto* next = l(start, end); + if(next != start) + { + result.emplace_back(start, next - start); + start = next; + error = false; + break; + } + } + + if(error) + { + MIGRAPHX_THROW("TOKENIZE: no token found!"); + } + } + + return result; +} + +} // namespace MIGRAPHX_INLINE_NS +} // namespace migraphx diff --git a/src/onnx/parse_einsum.cpp b/src/onnx/parse_einsum.cpp new file mode 100644 index 00000000000..b80c6cc327b --- /dev/null +++ b/src/onnx/parse_einsum.cpp @@ -0,0 +1,768 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace migraphx { +inline namespace MIGRAPHX_INLINE_NS { +namespace onnx { + +struct parse_einsum : op_parser +{ + using int_mat = std::vector>; + + struct equation_info + { + bool explicit_form = false; + std::vector input_terms; + std::string output_term; + std::map label_count; + std::vector>> duplicates; + size_t ellipsis_ndim = 0; + }; + + std::vector operators() const { return {{"Einsum"}}; } + + instruction_ref parse(const op_desc&, + const onnx_parser&, + const onnx_parser::node_info& info, + const std::vector& args) const + { + if(not contains(info.attributes, "equation")) + MIGRAPHX_THROW("Equation attribute is required"); + std::string equation = info.attributes.at("equation").s(); + + const equation_info eq_info = analyze_equation(equation, args); + + auto terms = eq_info.input_terms; + terms.push_back(eq_info.output_term); + const auto map_mat = make_mapping_matrix(terms, eq_info.label_count, eq_info.ellipsis_ndim); + + // Holds the mapping matrix representations of the two terms being processed + // cur_pair[0] acts as the accumulator for previously processed inputs + // cur_pair[1] holds the representation for the current input + // As operations are added to the einsum graph, cur_pair gets manipulated + int_mat cur_pair = make_matrix(2, map_mat[0].size(), -1); + + instruction_ref cur_op; + std::optional last_op; + // Perform a left fold on the inputs + for(auto arg_idx = 0; arg_idx < args.size(); ++arg_idx) + { + cur_op = args[arg_idx]; + cur_pair[1] = map_mat[arg_idx]; + + cur_op = preprocess_input( + info, cur_op, eq_info.duplicates[arg_idx], map_mat, arg_idx, cur_pair); + + if(last_op) + cur_op = process_pair(info, *last_op, cur_op, map_mat, arg_idx, cur_pair); + + last_op = cur_op; + cur_pair[0] = cur_pair[1]; + } + + return finalize_output(info, cur_op, map_mat, cur_pair); + } + + // Equation Parsing + + equation_info analyze_equation(std::string_view equation, + const std::vector& args) const + { + equation_info eq_info = parse_equation(equation); + + eq_info.ellipsis_ndim = validate_input_terms(eq_info.input_terms, args); + if(not eq_info.output_term.empty()) + validate_output_term(eq_info.output_term, eq_info.label_count, eq_info.ellipsis_ndim); + else if(not eq_info.explicit_form) + eq_info.output_term = generate_output_term(eq_info.label_count, eq_info.ellipsis_ndim); + + eq_info.duplicates = find_duplicates(eq_info.input_terms); + + return eq_info; + } + + // Equation: Input Output + // Input: Term | Term ',' Input + // Output: '->' TermOpt | epsilon + // TermOpt: Term | epsilon + // Term: Labels | LabelsOpt '...' LabelsOpt + // LabelsOpt: Labels | epsilon + // Labels: [a-zA-Z]+ + equation_info parse_equation(std::string_view equation) const + { + equation_info ret; + + std::vector lexers; + lexers.push_back(lex_while(&isspace)); + lexers.push_back(lex_while(&isalpha)); + lexers.push_back(lex_equal("->")); + lexers.push_back(lex_equal("...")); + lexers.push_back(lex_equal(",")); + + auto tokens = tokenize(equation.data(), equation.data() + equation.length(), lexers); + + std::string term; + bool has_ellipsis = false; + + for(const auto& token : tokens) + { + if(std::isspace(token.front()) != 0) + continue; + + if(std::isalpha(token.front()) != 0) + { + term += token; + if(not ret.explicit_form) + { + for(auto c : token) + ++ret.label_count[c]; + } + } + else if(token == "->") + { + if(ret.explicit_form) + MIGRAPHX_THROW("Einsum equation has multiple '->' symbols"); + + if(term.empty()) + MIGRAPHX_THROW("No term specified before '->' symbol"); + + ret.explicit_form = true; + has_ellipsis = false; + ret.input_terms.push_back(term); + term.clear(); + } + else if(token == "...") + { + if(has_ellipsis) + MIGRAPHX_THROW("Ellipsis can only appear once per einsum equation term"); + + has_ellipsis = true; + term += "*"; + } + else if(token == ",") + { + if(ret.explicit_form) + MIGRAPHX_THROW("Einsum equation can't have a ',' symbol in the output"); + + if(term.empty()) + MIGRAPHX_THROW("No term specified before ',' symbol"); + + has_ellipsis = false; + ret.input_terms.push_back(term); + term.clear(); + } + } + + if(ret.explicit_form) + ret.output_term = term; + else if(not term.empty()) + ret.input_terms.push_back(term); + else + MIGRAPHX_THROW("Last input term is missing"); + + return ret; + } + + size_t validate_input_terms(const std::vector& input_terms, + const std::vector& args) const + { + if(input_terms.size() != args.size()) + MIGRAPHX_THROW("Number of terms in the input equation - " + + std::to_string(input_terms.size()) + + " does not match the number of inputs " + std::to_string(args.size())); + + auto global_ellipsis_dims = 0u; + for(auto i = 0u; i < args.size(); ++i) + { + const auto& term = input_terms[i]; + const auto dims = args[i]->get_shape().lens(); + const auto rank = dims.size(); + + auto current_dim = 0u; + for(const auto l : term) + { + if(l == '*') + { + const auto ellipsis_dims = rank - term.size() + 1; + if(global_ellipsis_dims > 0 and ellipsis_dims != global_ellipsis_dims) + MIGRAPHX_THROW("Every occurrence of ellipsis in the equation must " + "represent the same number of dimensions"); + global_ellipsis_dims = ellipsis_dims; + current_dim += ellipsis_dims; + } + else + ++current_dim; + } + + if(current_dim != rank) + MIGRAPHX_THROW("Number of labels in " + std::to_string(i + 1) + ". input_term (" + + term + ") does not match the rank (" + std::to_string(rank) + + ") of corresponding input"); + } + + return global_ellipsis_dims; + } + + void validate_output_term(std::string_view output_term, + const std::map& label_count, + size_t ellipsis_ndim) const + { + std::string_view::iterator it = + std::find_if(output_term.begin(), output_term.end(), [&](auto l) { + return not contains(label_count, l) and l != '*'; + }); + if(it != output_term.end()) + MIGRAPHX_THROW("Output term contains label " + std::to_string(*it) + + ", which is not present in any of the input terms"); + + if(ellipsis_ndim != 0 and not contains(output_term, "*")) + MIGRAPHX_THROW( + "Output term does not contain ellipsis (...) even though an input term does"); + } + + // Creates output term when the equation is in implicit mode. + // The created output term must contain the alphabetically sorted sequence of labels appearing + // exactly once in the equation. + // If ellipsis are present in the left hand side of the equation, the ellipsis dimensions are + // set to the beginning of the output term. + std::string generate_output_term(const std::map& label_count, + size_t ellipsis_ndim) const + { + std::string output_term = ellipsis_ndim == 0 ? "" : "*"; + output_term = transform_accumulate( + label_count.begin(), label_count.end(), output_term, std::plus<>(), [](const auto& p) { + if(p.second == 1) + return std::string{p.first}; + else + return std::string{}; + }); + + return output_term; + } + + // Creates a matrix representation of the equation. + // + // Rows correspond to equation terms, in order of appearance. + // + // Columns represent the unique labels contained in the equation, ordered alphabetically. If + // ellipses are present in the equation, they are represented by the final N columns(N being the + // number of dimensions covered by and ellipsis). + // Labels not present in a given term are signified by -1. + // Labels present in a given term are signified by the input axis they represent. + // + // e.g. For equation "...ik,kj...->ij...", assuming ... cover two dimensions, the resulting + // matrix is: + // +-------+----+----+----+---+---+ + // | | i | j | k | * | * | + // +-------+----+----+----+---+---+ + // | ...ik | 2 | -1 | 3 | 0 | 1 | + // | kj... | -1 | 1 | 0 | 2 | 3 | + // | ij... | 0 | 1 | -1 | 2 | 3 | + // +-------+----+----+----+---+---+ + int_mat make_mapping_matrix(const std::vector& terms, + const std::map& label_count, + size_t ellipsis_ndim) const + { + std::map label_to_column; + + auto it = label_count.begin(); + for(auto i = 0; i < label_count.size(); ++i) + label_to_column[(it++)->first] = i; + + int_mat map_mat = make_matrix(terms.size(), label_count.size() + ellipsis_ndim, -1); + + for(auto i = 0; i < terms.size(); ++i) + { + const auto& term = terms[i]; + int col_id = 0; + for(const auto l : term) + { + if(l == '*') + { + std::iota(map_mat[i].end() - ellipsis_ndim, map_mat[i].end(), col_id); + col_id += ellipsis_ndim; + } + else + map_mat[i][label_to_column[l]] = col_id++; + } + } + + return map_mat; + } + + // Finds the duplicated labels in each of the terms and stores the axes on which they occur. + // + // e.g. For equation "iikjj,jkj", the result is a vector containing the two following maps: + // result[0]: {'i': [0, 1], 'j': [3, 4]} + // result[1]: {'j': [0, 2]} + std::vector>> + find_duplicates(const std::vector& terms) const + { + std::vector>> duplicates; + for(const auto& term : terms) + { + std::map> duplicate_axes; + for(auto i = 0; i < term.size(); ++i) + duplicate_axes[term[i]].push_back(i); + + erase_if(duplicate_axes, [](const auto& p) { return p.second.size() < 2; }); + duplicates.push_back(duplicate_axes); + } + + return duplicates; + } + + // Graph Building + + instruction_ref preprocess_input(const onnx_parser::node_info& info, + instruction_ref op, + const std::map>& duplicates, + const int_mat& map_mat, + size_t input_idx, + int_mat& cur_pair) const + { + if(not duplicates.empty()) + { + std::vector> diag; + diag.reserve(duplicates.size()); + std::transform(duplicates.begin(), + duplicates.end(), + std::back_inserter(diag), + [](const auto& d) { return d.second; }); + + op = gather_diagonal(info, cur_pair, op, diag); + } + + // Unsqueeze the input shape in the dimensions marked as -1 in the mapping_matrix + // Transpose the input shape so the labels are in alphabetical order + op = transpose_unsqueeze(info, cur_pair, op); + + std::vector red; + // Check if a given label appears in any of the subsequent mapping matrix terms(this + // includes the output). If does not, it is reduced and marked as -1 in cur_pair. + for(int d = 0; d < map_mat[0].size(); ++d) + { + bool all_neg_one = all_of(extract_column(map_mat, d, input_idx + 1, map_mat.size()), + [](auto i) { return i == -1; }); + if(all_neg_one and cur_pair[1][d] != -1 and cur_pair[0][d] == -1) + red.push_back(d); + } + + return apply_reduce_sum_op(info, op, red, cur_pair[1]); + } + + instruction_ref gather_diagonal(const onnx_parser::node_info& info, + int_mat& cur_pair, + instruction_ref op, + const int_mat& diag) const + { + if(diag.size() != 1) + MIGRAPHX_THROW( + "Parsing of equations with more than one duplicated labels per input term is not " + "implemented"); + + const auto& op_lens = op->get_shape().lens(); + + int first_axis = diag[0][0]; + const std::vector& axes = diag[0]; + if(not all_of(axes, [&](int a) { return op_lens[first_axis] == op_lens[a]; })) + MIGRAPHX_THROW("All duplicate labels have to be the same dimension"); + + std::vector batch_axes = set_difference(arange(0, op_lens.size()), axes); + if(not all_of(batch_axes, [&](int ba) { return ba < axes.front(); })) + MIGRAPHX_THROW( + "Parsing of equations with duplicated labels and batch axes that are not " + "the outer-most axes, is not implemented"); + + size_t batch_size = calc_dim(batch_axes, op_lens); + + std::vector indices; + for(size_t batch = 0; batch < batch_size; ++batch) + { + for(size_t i = 0; i < op_lens[first_axis]; ++i) + { + std::vector index(axes.size(), i); + indices.insert(indices.end(), index.begin(), index.end()); + } + } + + std::vector indices_lens{op_lens[first_axis], axes.size()}; + if(batch_size > 1) + indices_lens.insert(indices_lens.begin(), batch_size); + + auto indices_arg = info.add_literal( + migraphx::literal{migraphx::shape{migraphx::shape::int64_type, indices_lens}, indices}); + + op = info.add_instruction( + migraphx::make_op("gathernd", {{"batch_dims", batch_axes.size()}}), op, indices_arg); + + // compute output row + std::replace_if( + cur_pair[1].begin(), + cur_pair[1].end(), + [&](auto r) { return contains(axes, r); }, + first_axis); + + for(auto t : range(axes.begin() + 1, axes.end())) + { + std::transform(cur_pair[1].begin(), + cur_pair[1].end(), + cur_pair[1].begin(), + [t](auto r) { return r > t ? r - 1 : r; }); + } + + return op; + } + + instruction_ref process_pair(const onnx_parser::node_info& info, + instruction_ref op1, + instruction_ref op2, + const int_mat& map_mat, + size_t input_idx, + int_mat& cur_pair) const + { + // Label is present in current two terms and somewhere in subsequent terms + std::vector batch_axes; + // Label is present in only left term + std::vector left_only; + // Label is present in only right term + std::vector right_only; + // Label is present in current two terms, but not in the subsequent terms + std::vector sum_axes; + + auto not_neg_one = [](auto i) { return i != -1; }; + // Categorize axes according to label distribution in equation + for(int d = 0; d < map_mat[0].size(); ++d) + { + // The label is present in both terms of cur_pair + if(all_of(extract_column(cur_pair, d, 0, cur_pair.size()), not_neg_one)) + { + // The label is present in at least one of the subsequent terms + if(any_of(extract_column(map_mat, d, input_idx + 1, map_mat.size()), not_neg_one)) + batch_axes.push_back(d); + else + sum_axes.push_back(d); + } + // The label is missing in one or both of the cur_pair + else + { + if(cur_pair[0][d] >= 0) + left_only.push_back(d); + else if(cur_pair[1][d] >= 0) + right_only.push_back(d); + else + batch_axes.push_back(d); + } + } + + // Permute the inputs so batch_axes are outermost axes and sum_axes are innermost axes + auto&& perm = concat_vectors(batch_axes, left_only, right_only, sum_axes); + std::vector perm64(perm.begin(), perm.end()); + op1 = apply_transpose_op(info, op1, perm64, cur_pair[0]); + op2 = apply_transpose_op(info, op2, perm64, cur_pair[1]); + + auto new_batch_axes = arange(0, batch_axes.size()); + auto new_sum_axes = arange(perm.size() - sum_axes.size(), perm.size()); + + auto common_labels = set_union(new_batch_axes, new_sum_axes); + std::tie(op1, op2) = apply_broadcast_op(info, op1, op2, common_labels); + + auto op = batch_dot(info, cur_pair, op1, op2, new_batch_axes, new_sum_axes); + + return apply_transpose_op(info, op, invert_permutation(perm64), cur_pair[1]); + } + + instruction_ref batch_dot(const onnx_parser::node_info& info, + int_mat& cur_pair, + instruction_ref op1, + instruction_ref op2, + const std::vector& batch_axes, + const std::vector& sum_axes) const + { + auto op1_lens = op1->get_shape().lens(); + auto op2_lens = op2->get_shape().lens(); + + std::vector dims1{static_cast(calc_dim(batch_axes, op1_lens)), + -1, + static_cast(calc_dim(sum_axes, op1_lens))}; + std::vector dims2{static_cast(calc_dim(batch_axes, op2_lens)), + -1, + static_cast(calc_dim(sum_axes, op2_lens))}; + + op1 = info.add_instruction(make_op("reshape", {{"dims", dims1}}), op1); + op2 = info.add_instruction(make_op("reshape", {{"dims", dims2}}), op2); + op2 = info.add_instruction(make_op("transpose", {{"permutation", {0, 2, 1}}}), op2); + instruction_ref op = info.add_instruction(make_op("dot"), op1, op2); + + std::vector new_lens(op1_lens.size(), 1); + std::transform(op1_lens.begin(), + op1_lens.begin() + (new_lens.size() - sum_axes.size()), + op2_lens.begin(), + new_lens.begin(), + [](auto len1, auto len2) { return std::max(len1, len2); }); + + op = info.add_instruction(make_op("reshape", {{"dims", new_lens}}), op); + + // compute output row + std::transform(cur_pair[0].begin(), + cur_pair[0].end(), + cur_pair[1].begin(), + cur_pair[1].begin(), + [](int lhs, int rhs) { return std::max(lhs, rhs); }); + for(int a : sum_axes) + cur_pair[1][a] = -1; + + return op; + } + + instruction_ref finalize_output(const onnx_parser::node_info& info, + instruction_ref op, + const int_mat& map_mat, + int_mat& cur_pair) const + { + if(any_of(map_mat.back(), [](auto i) { return i >= 0; })) + { + cur_pair[1] = map_mat.back(); + std::vector red; + for(int d = 0; d < map_mat[0].size(); ++d) + { + if(cur_pair[0][d] > 0 and cur_pair[1][d] == -1) + red.push_back(d); + } + + op = apply_reduce_sum_op(info, op, red, cur_pair[1]); + } + + return squeeze_transpose(info, cur_pair, op, map_mat.back()); + } + + // Permutes the labels so they are in alphabetical order and expands the input dimensions to + // match the number of unique labels in the entire equation. + instruction_ref transpose_unsqueeze(const onnx_parser::node_info& info, + int_mat& cur_pair, + instruction_ref op) const + { + std::vector perm; + std::vector unsq_axes; + + for(auto i = 0; i < cur_pair[1].size(); ++i) + { + if(cur_pair[1][i] == -1) // unsqueeze the dimensions corresponding to the missing labels + unsq_axes.push_back(i); + else // permute the rest + perm.push_back(cur_pair[1][i]); + } + + std::vector perm64(perm.begin(), perm.end()); + op = apply_transpose_op(info, op, perm64, perm); + + // compute output row + for(auto axis : unsq_axes) + { + perm.insert(perm.begin() + axis, -1); + } + cur_pair[1] = perm; + + return info.add_instruction(make_op("unsqueeze", {{"axes", unsq_axes}}), op); + } + + // Reverts the effects of transpose_unsqueeze (adjusts the output so it fits the equation) + instruction_ref squeeze_transpose(const onnx_parser::node_info& info, + int_mat& cur_pair, + instruction_ref op, + std::vector row_output) const + { + std::vector sq_axes; + std::vector perm; + + for(auto i = 0; i < row_output.size(); ++i) + { + if(row_output[i] == -1) // squeeze the dimensions corresponding to the missing labels + sq_axes.push_back(i); + else // permute the rest + perm.push_back(row_output[i]); + } + + op = info.add_instruction(make_op("squeeze", {{"axes", sq_axes}}), op); + + if(not perm.empty()) + { + std::vector perm64(perm.begin(), perm.end()); + op = apply_transpose_op(info, op, invert_permutation(perm64), perm); + // compute output row + for(auto axis : sq_axes) + { + perm.insert(perm.begin() + axis, -1); + } + cur_pair[1] = perm; + } + + return op; + } + + instruction_ref apply_transpose_op(const onnx_parser::node_info& info, + instruction_ref op, + const std::vector& perm, + std::vector& row) const + { + op = info.add_instruction(make_op("transpose", {{"permutation", perm}}), op); + // compute output row + row = reorder_dims(row, perm); + + return op; + } + + std::pair + apply_broadcast_op(const onnx_parser::node_info& info, + instruction_ref opl, + instruction_ref opr, + const std::vector& common_labels) const + { + std::pair ret; + + auto llens = opl->get_shape().lens(); + auto rlens = opr->get_shape().lens(); + + bool lbc = false; + bool rbc = false; + for(auto l : common_labels) + { + if(llens[l] == 1 and rlens[l] == 1) + continue; + + if(llens[l] == 1) + { + lbc = true; + llens[l] = rlens[l]; + } + + if(rlens[l] == 1) + { + rbc = true; + rlens[l] = llens[l]; + } + } + + if(lbc) + opl = info.add_instruction(make_op("multibroadcast", {{"out_lens", llens}}), opl); + if(rbc) + opr = info.add_instruction(make_op("multibroadcast", {{"out_lens", rlens}}), opr); + + ret.first = opl; + ret.second = opr; + return ret; + } + + instruction_ref apply_reduce_sum_op(const onnx_parser::node_info& info, + instruction_ref op, + const std::vector& axes, + std::vector& row) const + { + if(axes.empty()) + return op; + + for(int a : axes) + row[a] = -1; + + return info.add_instruction(make_op("reduce_sum", {{"axes", axes}}), op); + } + + // Utility + + int_mat make_matrix(int cur_pair, int cols, int fill_value) const + { + return {static_cast(cur_pair), std::vector(cols, fill_value)}; + } + + std::vector extract_column(int_mat map_mat, int col_idx, int row_begin, int row_end) const + { + std::vector ret; + ret.reserve(row_end - row_begin); + + std::transform(map_mat.begin() + row_begin, + map_mat.begin() + row_end, + std::back_inserter(ret), + [col_idx](const auto& x) { return x[col_idx]; }); + + return ret; + } + + std::vector set_union(const std::vector& lhs, const std::vector& rhs) const + { + std::vector ret; + std::set_union(lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(ret)); + + return ret; + } + + std::vector set_difference(const std::vector& lhs, const std::vector& rhs) const + { + std::vector ret; + std::set_difference( + lhs.begin(), lhs.end(), rhs.begin(), rhs.end(), std::back_inserter(ret)); + + return ret; + } + + // Equivalent to numpy.arange without the step parameter + std::vector arange(int start_value, int end_value) const + { + std::vector ret(end_value - start_value); + std::iota(ret.begin(), ret.end(), start_value); + return ret; + } + + template + Vec concat_vectors(Vec vec, Vecs&&... vecs) const + { + size_t reserve_size = vec.size(); + each_args([&](auto&& v) { reserve_size += v.size(); }, vecs...); + + vec.reserve(reserve_size); + each_args([&](auto&& v) { vec.insert(vec.end(), v.begin(), v.end()); }, vecs...); + + return vec; + } + + size_t calc_dim(const std::vector& axes, const std::vector& lens) const + { + return std::accumulate( + axes.begin(), axes.end(), 1, [&](auto acc, auto axis) { return acc * lens[axis]; }); + }; +}; + +} // namespace onnx +} // namespace MIGRAPHX_INLINE_NS +} // namespace migraphx diff --git a/test/onnx/einsum_2d_3d_multiplication_test.onnx b/test/onnx/einsum_2d_3d_multiplication_test.onnx new file mode 100644 index 00000000000..1dc5f8b9fd3 --- /dev/null +++ b/test/onnx/einsum_2d_3d_multiplication_test.onnx @@ -0,0 +1,18 @@ +  einsum_2d_3d_multiplication_test: +* +x1 +x2y"Einsum* +equation"ij,jkl  einsum_2d_3d_multiplication_testZ +x1 +  + +Z +x2 + + + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_3_inputs_test.onnx b/test/onnx/einsum_3_inputs_test.onnx new file mode 100644 index 00000000000..fe5d6649428 --- /dev/null +++ b/test/onnx/einsum_3_inputs_test.onnx @@ -0,0 +1,25 @@ + einsum_3_inputs_test:² +7 +x1 +x2 +x3y"Einsum* +equation"bac,cd,def->ebc einsum_3_inputs_testZ +x1 + + + +Z +x2 +  + +Z +x3 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_3d_broadcast_test.onnx b/test/onnx/einsum_3d_broadcast_test.onnx new file mode 100644 index 00000000000..d2acb96b6df --- /dev/null +++ b/test/onnx/einsum_3d_broadcast_test.onnx @@ -0,0 +1,20 @@ + einsum_3d_broadcast_test:™ +0 +x1 +x2y"Einsum* +equation" bik,bkj->bij einsum_3d_broadcast_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_3d_diagonal_test.onnx b/test/onnx/einsum_3d_diagonal_test.onnx new file mode 100644 index 00000000000..78afe5f3172 --- /dev/null +++ b/test/onnx/einsum_3d_diagonal_test.onnx @@ -0,0 +1,13 @@ + einsum_3d_diagonal_test:n +% +xy"Einsum* +equation"iii->i einsum_3d_diagonal_testZ +x + + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_3d_opposite_broadcast_test.onnx b/test/onnx/einsum_3d_opposite_broadcast_test.onnx new file mode 100644 index 00000000000..14bffd25d02 --- /dev/null +++ b/test/onnx/einsum_3d_opposite_broadcast_test.onnx @@ -0,0 +1,20 @@ + !einsum_3d_opposite_broadcast_test:¢ +0 +x1 +x2y"Einsum* +equation" bik,bkj->bij !einsum_3d_opposite_broadcast_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_batch_matrix_diagonal_test.onnx b/test/onnx/einsum_batch_matrix_diagonal_test.onnx new file mode 100644 index 00000000000..db52eaf73ca --- /dev/null +++ b/test/onnx/einsum_batch_matrix_diagonal_test.onnx @@ -0,0 +1,13 @@ + !einsum_batch_matrix_diagonal_test:} +* +xy"Einsum* +equation" ...ii->...i !einsum_batch_matrix_diagonal_testZ +x + + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_batch_matrix_multiplication_test.onnx b/test/onnx/einsum_batch_matrix_multiplication_test.onnx new file mode 100644 index 00000000000..f27df9fb6e0 --- /dev/null +++ b/test/onnx/einsum_batch_matrix_multiplication_test.onnx @@ -0,0 +1,20 @@ + 'einsum_batch_matrix_multiplication_test:¨ +0 +x1 +x2y"Einsum* +equation" ijk,ikl->ijl 'einsum_batch_matrix_multiplication_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_bilinear_transformation_test.onnx b/test/onnx/einsum_bilinear_transformation_test.onnx new file mode 100644 index 00000000000..258b4b9b007 --- /dev/null +++ b/test/onnx/einsum_bilinear_transformation_test.onnx @@ -0,0 +1,23 @@ + #einsum_bilinear_transformation_test:· +5 +x1 +x2 +x3y"Einsum* +equation" ik,jkl,il->ij #einsum_bilinear_transformation_testZ +x1 +  + +Z +x2 + + + +Z +x3 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_broadcast_test.onnx b/test/onnx/einsum_broadcast_test.onnx new file mode 100644 index 00000000000..7ead2ed4dcc --- /dev/null +++ b/test/onnx/einsum_broadcast_test.onnx @@ -0,0 +1,17 @@ + einsum_broadcast_test:Š +0 +x1 +x2y"Einsum* +equation" ij, jk -> ik einsum_broadcast_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_column_sum_test.onnx b/test/onnx/einsum_column_sum_test.onnx new file mode 100644 index 00000000000..c280d867dc7 --- /dev/null +++ b/test/onnx/einsum_column_sum_test.onnx @@ -0,0 +1,12 @@ + einsum_column_sum_test:d +$ +xy"Einsum* +equation"ij->j einsum_column_sum_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_comma_in_output_negative_test.onnx b/test/onnx/einsum_comma_in_output_negative_test.onnx new file mode 100644 index 00000000000..f9c413fae79 --- /dev/null +++ b/test/onnx/einsum_comma_in_output_negative_test.onnx @@ -0,0 +1,18 @@ + $einsum_comma_in_output_negative_test:— +. +x1 +x2y"Einsum* +equation" +ii,jj->i,j $einsum_comma_in_output_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_1_test.onnx b/test/onnx/einsum_common_1_test.onnx new file mode 100644 index 00000000000..b2c1d03c4f1 --- /dev/null +++ b/test/onnx/einsum_common_1_test.onnx @@ -0,0 +1,23 @@ + einsum_common_1_test:¤ +3 +x1 +x2y"Einsum* +equation"bsnh,btnh->bnts einsum_common_1_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_2_test.onnx b/test/onnx/einsum_common_2_test.onnx new file mode 100644 index 00000000000..79a4d2a1431 --- /dev/null +++ b/test/onnx/einsum_common_2_test.onnx @@ -0,0 +1,22 @@ + einsum_common_2_test:Ÿ +2 +x1 +x2y"Einsum* +equation"bsnh,ctnh->nts einsum_common_2_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_3_test.onnx b/test/onnx/einsum_common_3_test.onnx new file mode 100644 index 00000000000..359e3a9566e --- /dev/null +++ b/test/onnx/einsum_common_3_test.onnx @@ -0,0 +1,22 @@ + einsum_common_3_test:Ÿ +2 +x1 +x2y"Einsum* +equation"bnst,chst->shn einsum_common_3_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_4_test.onnx b/test/onnx/einsum_common_4_test.onnx new file mode 100644 index 00000000000..63266e23e1e --- /dev/null +++ b/test/onnx/einsum_common_4_test.onnx @@ -0,0 +1,23 @@ + einsum_common_4_test:¤ +3 +x1 +x2y"Einsum* +equation"bcxd,bcyd->bcxy einsum_common_4_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_5_test.onnx b/test/onnx/einsum_common_5_test.onnx new file mode 100644 index 00000000000..1db9d5983b1 --- /dev/null +++ b/test/onnx/einsum_common_5_test.onnx @@ -0,0 +1,23 @@ + einsum_common_5_test:ª +9 +x1 +x2y"Einsum*$ +equation"...qhd,...khd->...hqk einsum_common_5_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_6_test.onnx b/test/onnx/einsum_common_6_test.onnx new file mode 100644 index 00000000000..4b3d088e46c --- /dev/null +++ b/test/onnx/einsum_common_6_test.onnx @@ -0,0 +1,20 @@ + einsum_common_6_test:› +6 +x1 +x2y"Einsum*! +equation"i...k,k...j->i...j einsum_common_6_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_7_test.onnx b/test/onnx/einsum_common_7_test.onnx new file mode 100644 index 00000000000..375d0ae1d44 --- /dev/null +++ b/test/onnx/einsum_common_7_test.onnx @@ -0,0 +1,12 @@ + einsum_common_7_test:f +( +xy"Einsum* +equation" ...j->... einsum_common_7_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_common_8_test.onnx b/test/onnx/einsum_common_8_test.onnx new file mode 100644 index 00000000000..4f1935dfdc3 --- /dev/null +++ b/test/onnx/einsum_common_8_test.onnx @@ -0,0 +1,17 @@ + einsum_common_8_test:† +- +x1 +x2y"Einsum* +equation" ii,jj->ij einsum_common_8_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_diag_vector_multiply_test.onnx b/test/onnx/einsum_diag_vector_multiply_test.onnx new file mode 100644 index 00000000000..ac9e169db0c --- /dev/null +++ b/test/onnx/einsum_diag_vector_multiply_test.onnx @@ -0,0 +1,17 @@ +  einsum_diag_vector_multiply_test:ˆ ++ +x1 +x2y"Einsum* +equation"ii,i->i  einsum_diag_vector_multiply_testZ +x1 +  + +Z +x2 + + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_diagonal_dim_mismatch_negative_test.onnx b/test/onnx/einsum_diagonal_dim_mismatch_negative_test.onnx new file mode 100644 index 00000000000..692a71dde96 --- /dev/null +++ b/test/onnx/einsum_diagonal_dim_mismatch_negative_test.onnx @@ -0,0 +1,12 @@ + *einsum_diagonal_dim_mismatch_negative_test:x +$ +xy"Einsum* +equation"ii->i *einsum_diagonal_dim_mismatch_negative_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_element_wise_multiplication_and_row_sum_test.onnx b/test/onnx/einsum_element_wise_multiplication_and_row_sum_test.onnx new file mode 100644 index 00000000000..dd5b8b6eb5a --- /dev/null +++ b/test/onnx/einsum_element_wise_multiplication_and_row_sum_test.onnx @@ -0,0 +1,17 @@ + 3einsum_element_wise_multiplication_and_row_sum_test:› ++ +x1 +x2y"Einsum* +equation"i,ij->i 3einsum_element_wise_multiplication_and_row_sum_testZ +x1 + + +Z +x2 +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_implicit_form_test.onnx b/test/onnx/einsum_ellipsis_implicit_form_test.onnx new file mode 100644 index 00000000000..e706a21d803 --- /dev/null +++ b/test/onnx/einsum_ellipsis_implicit_form_test.onnx @@ -0,0 +1,22 @@ + "einsum_ellipsis_implicit_form_test:¬ +1 +x1 +x2y"Einsum* +equation" ...qhd,...khd "einsum_ellipsis_implicit_form_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_mismatch_negative_test.onnx b/test/onnx/einsum_ellipsis_mismatch_negative_test.onnx new file mode 100644 index 00000000000..c93e6a69c5a --- /dev/null +++ b/test/onnx/einsum_ellipsis_mismatch_negative_test.onnx @@ -0,0 +1,21 @@ + &einsum_ellipsis_mismatch_negative_test:± +6 +x1 +x2y"Einsum*! +equation"...ii,...jj->...ij &einsum_ellipsis_mismatch_negative_testZ +x1 + + + +Z +x2 + + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_multidim_test.onnx b/test/onnx/einsum_ellipsis_multidim_test.onnx new file mode 100644 index 00000000000..d43f99d8dc1 --- /dev/null +++ b/test/onnx/einsum_ellipsis_multidim_test.onnx @@ -0,0 +1,23 @@ + einsum_ellipsis_multidim_test:° +6 +x1 +x2y"Einsum*! +equation"...ik,kj...->ij... einsum_ellipsis_multidim_testZ +x1 + + + + +Z +x2 + + + + +b +y + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_scalar_multiplication_test.onnx b/test/onnx/einsum_ellipsis_scalar_multiplication_test.onnx new file mode 100644 index 00000000000..f2c64b96d74 --- /dev/null +++ b/test/onnx/einsum_ellipsis_scalar_multiplication_test.onnx @@ -0,0 +1,17 @@ + *einsum_ellipsis_scalar_multiplication_test:› +, +x1 +x2y"Einsum* +equation"..., ... *einsum_ellipsis_scalar_multiplication_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_test.onnx b/test/onnx/einsum_ellipsis_test.onnx new file mode 100644 index 00000000000..3073e777bbe --- /dev/null +++ b/test/onnx/einsum_ellipsis_test.onnx @@ -0,0 +1,20 @@ + einsum_ellipsis_test:› +6 +x1 +x2y"Einsum*! +equation"...ik,kj...->ij... einsum_ellipsis_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_ellipsis_zero_test.onnx b/test/onnx/einsum_ellipsis_zero_test.onnx new file mode 100644 index 00000000000..fc799ae0c72 --- /dev/null +++ b/test/onnx/einsum_ellipsis_zero_test.onnx @@ -0,0 +1,20 @@ + einsum_ellipsis_zero_test:£ +9 +x1 +x2y"Einsum*$ +equation"...qhd,...khd->...hqk einsum_ellipsis_zero_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_empty_term_before_arrow_negative_test.onnx b/test/onnx/einsum_empty_term_before_arrow_negative_test.onnx new file mode 100644 index 00000000000..e558bc7c728 --- /dev/null +++ b/test/onnx/einsum_empty_term_before_arrow_negative_test.onnx @@ -0,0 +1,17 @@ + ,einsum_empty_term_before_arrow_negative_test:œ ++ +x1 +x2y"Einsum* +equation"ii,->ij ,einsum_empty_term_before_arrow_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_empty_term_before_comma_negative_test.onnx b/test/onnx/einsum_empty_term_before_comma_negative_test.onnx new file mode 100644 index 00000000000..fe9b994d712 --- /dev/null +++ b/test/onnx/einsum_empty_term_before_comma_negative_test.onnx @@ -0,0 +1,18 @@ + ,einsum_empty_term_before_comma_negative_test:Ÿ +. +x1 +x2y"Einsum* +equation" +ii,,jj->ij ,einsum_empty_term_before_comma_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_hadamard_product_test.onnx b/test/onnx/einsum_hadamard_product_test.onnx new file mode 100644 index 00000000000..b72c23efb3f --- /dev/null +++ b/test/onnx/einsum_hadamard_product_test.onnx @@ -0,0 +1,17 @@ + einsum_hadamard_product_test:Ž +- +x1 +x2y"Einsum* +equation" ij,ij->ij einsum_hadamard_product_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_last_input_missing_negative_test.onnx b/test/onnx/einsum_last_input_missing_negative_test.onnx new file mode 100644 index 00000000000..2546abfcf3f --- /dev/null +++ b/test/onnx/einsum_last_input_missing_negative_test.onnx @@ -0,0 +1,17 @@ + 'einsum_last_input_missing_negative_test:– +* +x1 +x2y"Einsum* +equation"ii,jj, 'einsum_last_input_missing_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_diagonal_test.onnx b/test/onnx/einsum_matrix_diagonal_test.onnx new file mode 100644 index 00000000000..dc979a40e5a --- /dev/null +++ b/test/onnx/einsum_matrix_diagonal_test.onnx @@ -0,0 +1,12 @@ + einsum_matrix_diagonal_test:i +$ +xy"Einsum* +equation"ii->i einsum_matrix_diagonal_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_dot_product_test.onnx b/test/onnx/einsum_matrix_dot_product_test.onnx new file mode 100644 index 00000000000..a2a048f29b0 --- /dev/null +++ b/test/onnx/einsum_matrix_dot_product_test.onnx @@ -0,0 +1,17 @@ + einsum_matrix_dot_product_test:Š ++ +x1 +x2y"Einsum* +equation"ij,ij-> einsum_matrix_dot_product_testZ +x1 +  + +Z +x2 +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_matrix_multiplication_test.onnx b/test/onnx/einsum_matrix_matrix_multiplication_test.onnx new file mode 100644 index 00000000000..e15eb7e1308 --- /dev/null +++ b/test/onnx/einsum_matrix_matrix_multiplication_test.onnx @@ -0,0 +1,17 @@ + (einsum_matrix_matrix_multiplication_test:š +- +x1 +x2y"Einsum* +equation" ij,kj->ik (einsum_matrix_matrix_multiplication_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_outer_product_test.onnx b/test/onnx/einsum_matrix_outer_product_test.onnx new file mode 100644 index 00000000000..0ba528b0833 --- /dev/null +++ b/test/onnx/einsum_matrix_outer_product_test.onnx @@ -0,0 +1,19 @@ +  einsum_matrix_outer_product_test:œ +/ +x1 +x2y"Einsum* +equation" ij,kl->ijkl  einsum_matrix_outer_product_testZ +x1 +  + +Z +x2 +  + +b +y + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_trace_implicit_test.onnx b/test/onnx/einsum_matrix_trace_implicit_test.onnx new file mode 100644 index 00000000000..97782fa6558 --- /dev/null +++ b/test/onnx/einsum_matrix_trace_implicit_test.onnx @@ -0,0 +1,12 @@ + !einsum_matrix_trace_implicit_test:l +! +xy"Einsum* +equation"ii !einsum_matrix_trace_implicit_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_trace_test.onnx b/test/onnx/einsum_matrix_trace_test.onnx new file mode 100644 index 00000000000..e805356724b --- /dev/null +++ b/test/onnx/einsum_matrix_trace_test.onnx @@ -0,0 +1,12 @@ + einsum_matrix_trace_test:e +# +xy"Einsum* +equation"ii-> einsum_matrix_trace_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_matrix_vector_multiplication_test.onnx b/test/onnx/einsum_matrix_vector_multiplication_test.onnx new file mode 100644 index 00000000000..931e94ecccb --- /dev/null +++ b/test/onnx/einsum_matrix_vector_multiplication_test.onnx @@ -0,0 +1,17 @@ + (einsum_matrix_vector_multiplication_test: +) +x +vy"Einsum* +equation"ij,j->i (einsum_matrix_vector_multiplication_testZ +x +  + +Z +v + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_missing_equation_negative_test.onnx b/test/onnx/einsum_missing_equation_negative_test.onnx new file mode 100644 index 00000000000..23fae664389 --- /dev/null +++ b/test/onnx/einsum_missing_equation_negative_test.onnx @@ -0,0 +1,16 @@ + %einsum_missing_equation_negative_test:} + +x1 +x2y"Einsum%einsum_missing_equation_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_multiple_arrows_negative_test.onnx b/test/onnx/einsum_multiple_arrows_negative_test.onnx new file mode 100644 index 00000000000..02a7e9fe425 --- /dev/null +++ b/test/onnx/einsum_multiple_arrows_negative_test.onnx @@ -0,0 +1,17 @@ + $einsum_multiple_arrows_negative_test:˜ +/ +x1 +x2y"Einsum* +equation" ii,jj->->ij $einsum_multiple_arrows_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_multiple_diagonals_negative_test.onnx b/test/onnx/einsum_multiple_diagonals_negative_test.onnx new file mode 100644 index 00000000000..022ac5508f4 --- /dev/null +++ b/test/onnx/einsum_multiple_diagonals_negative_test.onnx @@ -0,0 +1,14 @@ + 'einsum_multiple_diagonals_negative_test:„ +' +xy"Einsum* +equation"iijj->ij 'einsum_multiple_diagonals_negative_testZ +x + + + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_multiple_ellipses_negative_test.onnx b/test/onnx/einsum_multiple_ellipses_negative_test.onnx new file mode 100644 index 00000000000..289f1eadb70 --- /dev/null +++ b/test/onnx/einsum_multiple_ellipses_negative_test.onnx @@ -0,0 +1,20 @@ + &einsum_multiple_ellipses_negative_test:° +9 +x1 +x2y"Einsum*$ +equation"......ii,...jj->...ij &einsum_multiple_ellipses_negative_testZ +x1 + + + +Z +x2 + + + +b +y + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_output_missing_ellipsis_negative_test.onnx b/test/onnx/einsum_output_missing_ellipsis_negative_test.onnx new file mode 100644 index 00000000000..abb8ffd3edc --- /dev/null +++ b/test/onnx/einsum_output_missing_ellipsis_negative_test.onnx @@ -0,0 +1,19 @@ + ,einsum_output_missing_ellipsis_negative_test:¬ +3 +x1 +x2y"Einsum* +equation"...ii,...jj->ij ,einsum_output_missing_ellipsis_negative_testZ +x1 + + + +Z +x2 + + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_output_surplus_label_negative_test.onnx b/test/onnx/einsum_output_surplus_label_negative_test.onnx new file mode 100644 index 00000000000..0ecda44f262 --- /dev/null +++ b/test/onnx/einsum_output_surplus_label_negative_test.onnx @@ -0,0 +1,18 @@ + )einsum_output_surplus_label_negative_test:œ +. +x1 +x2y"Einsum* +equation" +ii,jj->ijk )einsum_output_surplus_label_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_permute_test.onnx b/test/onnx/einsum_permute_test.onnx new file mode 100644 index 00000000000..ece6fc147c4 --- /dev/null +++ b/test/onnx/einsum_permute_test.onnx @@ -0,0 +1,12 @@ + einsum_permute_test:f +% +xy"Einsum* +equation"ij->ji einsum_permute_testZ +x +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_rank_mismatch_negative_test.onnx b/test/onnx/einsum_rank_mismatch_negative_test.onnx new file mode 100644 index 00000000000..c65fe549015 --- /dev/null +++ b/test/onnx/einsum_rank_mismatch_negative_test.onnx @@ -0,0 +1,18 @@ + "einsum_rank_mismatch_negative_test:• +. +x1 +x2y"Einsum* +equation" +iik,jj->ij "einsum_rank_mismatch_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_right_batch_diagonal_negative_test.onnx b/test/onnx/einsum_right_batch_diagonal_negative_test.onnx new file mode 100644 index 00000000000..72143c619b7 --- /dev/null +++ b/test/onnx/einsum_right_batch_diagonal_negative_test.onnx @@ -0,0 +1,13 @@ + )einsum_right_batch_diagonal_negative_test:… +* +xy"Einsum* +equation" ii...->i... )einsum_right_batch_diagonal_negative_testZ +x + + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_row_sum_test.onnx b/test/onnx/einsum_row_sum_test.onnx new file mode 100644 index 00000000000..7e2b61abdf2 --- /dev/null +++ b/test/onnx/einsum_row_sum_test.onnx @@ -0,0 +1,12 @@ + einsum_row_sum_test:a +$ +xy"Einsum* +equation"ij->i einsum_row_sum_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_summation_test.onnx b/test/onnx/einsum_summation_test.onnx new file mode 100644 index 00000000000..92bba55d972 --- /dev/null +++ b/test/onnx/einsum_summation_test.onnx @@ -0,0 +1,12 @@ + einsum_summation_test:b +# +xy"Einsum* +equation"ij-> einsum_summation_testZ +x +  + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_tensor_contraction_test.onnx b/test/onnx/einsum_tensor_contraction_test.onnx new file mode 100644 index 00000000000..0ca55621722 --- /dev/null +++ b/test/onnx/einsum_tensor_contraction_test.onnx @@ -0,0 +1,25 @@ + einsum_tensor_contraction_test:¸ +5 +x1 +x2y"Einsum* +equation"pqrs,tuqvr->pstuv einsum_tensor_contraction_testZ +x1 + + + + +Z +x2 + + + + + +b +y + + + + + +B \ No newline at end of file diff --git a/test/onnx/einsum_term_input_mismatch_negative_test.onnx b/test/onnx/einsum_term_input_mismatch_negative_test.onnx new file mode 100644 index 00000000000..eb59ebf5aa0 --- /dev/null +++ b/test/onnx/einsum_term_input_mismatch_negative_test.onnx @@ -0,0 +1,17 @@ + (einsum_term_input_mismatch_negative_test:ž +1 +x1 +x2y"Einsum* +equation" ii,jj,kk->ijk (einsum_term_input_mismatch_negative_testZ +x1 +  + +Z +x2 +  + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/einsum_vector_dot_product_test.onnx b/test/onnx/einsum_vector_dot_product_test.onnx new file mode 100644 index 00000000000..1bb949ac3b2 --- /dev/null +++ b/test/onnx/einsum_vector_dot_product_test.onnx @@ -0,0 +1,17 @@ + einsum_vector_dot_product_test:€ +) +x1 +x2y"Einsum* +equation"i,i-> einsum_vector_dot_product_testZ +x1 + + +Z +x2 + + +b +y + + +B \ No newline at end of file diff --git a/test/onnx/einsum_vector_outer_product_test.onnx b/test/onnx/einsum_vector_outer_product_test.onnx new file mode 100644 index 00000000000..d91b4e7c056 --- /dev/null +++ b/test/onnx/einsum_vector_outer_product_test.onnx @@ -0,0 +1,17 @@ +  einsum_vector_outer_product_test:ˆ ++ +x1 +x2y"Einsum* +equation"i,j->ij  einsum_vector_outer_product_testZ +x1 + + +Z +x2 + + +b +y +  + +B \ No newline at end of file diff --git a/test/onnx/gen_onnx.py b/test/onnx/gen_onnx.py index e5afa0068fc..e1effe70183 100644 --- a/test/onnx/gen_onnx.py +++ b/test/onnx/gen_onnx.py @@ -2138,6 +2138,749 @@ def dynamicquantizelinear_2d_test(): return ([node], [x], [y, y_scale, y_zero_point]) +@onnx_test() +def einsum_permute_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ij->ji') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_summation_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ij->') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_column_sum_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ij->j') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_row_sum_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ij->i') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_matrix_vector_multiplication_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3]) + v = helper.make_tensor_value_info('v', TensorProto.FLOAT, [3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x', 'v'], + outputs=['y'], + equation='ij,j->i') + + return ([node], [x, v], [y]) + + +@onnx_test() +def einsum_matrix_matrix_multiplication_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij,kj->ik') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_vector_dot_product_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='i,i->') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_matrix_dot_product_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij,ij->') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_hadamard_product_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij,ij->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_vector_outer_product_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [5]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 5]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='i,j->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_matrix_outer_product_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 5]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 2, 5]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij,kl->ijkl') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_batch_matrix_multiplication_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 2, 5]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 5, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ijk,ikl->ijl') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_tensor_contraction_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3, 5, 7]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, + [1, 3, 3, 7, 5]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 7, 1, 3, 7]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='pqrs,tuqvr->pstuv') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_matrix_diagonal_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ii->i') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_batch_matrix_diagonal_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='...ii->...i') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_3d_diagonal_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='iii->i') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_diag_vector_multiply_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,i->i') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_matrix_trace_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ii->') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_matrix_trace_implicit_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ii') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_2d_3d_multiplication_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 4, 5]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 5]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij,jkl') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_element_wise_multiplication_and_row_sum_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 4]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='i,ij->i') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_broadcast_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 1]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ij, jk -> ik') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_3d_broadcast_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [1, 3, 1]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 4]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bik,bkj->bij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_3d_opposite_broadcast_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [1, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 1, 4]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3, 4]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bik,bkj->bij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_3_inputs_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 2, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2]) + x3 = helper.make_tensor_value_info('x3', TensorProto.FLOAT, [2, 2, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2', 'x3'], + outputs=['y'], + equation='bac,cd,def->ebc') + + return ([node], [x1, x2, x3], [y]) + + +@onnx_test() +def einsum_bilinear_transformation_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [5, 3, 7]) + x3 = helper.make_tensor_value_info('x3', TensorProto.FLOAT, [2, 7]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2', 'x3'], + outputs=['y'], + equation='ik,jkl,il->ij') + + return ([node], [x1, x2, x3], [y]) + + +@onnx_test() +def einsum_ellipsis_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 4, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...ik,kj...->ij...') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_ellipsis_multidim_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 4, 3, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 3, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...ik,kj...->ij...') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_ellipsis_zero_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [4, 3, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 4]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...qhd,...khd->...hqk') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_ellipsis_implicit_form_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 4, 3, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 4, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...qhd,...khd') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_ellipsis_scalar_multiplication_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='..., ...') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_1_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 2, 2, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 2, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bsnh,btnh->bnts') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_2_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 2, 2, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 2, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bsnh,ctnh->nts') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_3_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 2, 2, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 2, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bnst,chst->shn') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_4_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [2, 2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 4, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 3, 4]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='bcxd,bcyd->bcxy') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_5_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 2, 3, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 4, 3, 2]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3, 2, 4]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...qhd,...khd->...hqk') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_6_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 2, 2]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [2, 2, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 2, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='i...k,k...j->i...j') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_common_7_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5, 5]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='...j->...') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_common_8_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_missing_equation_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', inputs=['x1', 'x2'], outputs=['y']) + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_multiple_arrows_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj->->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_empty_term_before_arrow_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_multiple_ellipses_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='......ii,...jj->...ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_comma_in_output_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj->i,j') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_empty_term_before_comma_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,,jj->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_last_input_missing_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj,') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_term_input_mismatch_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj,kk->ijk') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_ellipsis_mismatch_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...ii,...jj->...ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_rank_mismatch_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='iik,jj->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_output_surplus_label_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='ii,jj->ijk') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_output_missing_ellipsis_negative_test(): + x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3, 3, 3]) + x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x1', 'x2'], + outputs=['y'], + equation='...ii,...jj->ij') + + return ([node], [x1, x2], [y]) + + +@onnx_test() +def einsum_multiple_diagonals_negative_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='iijj->ij') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_diagonal_dim_mismatch_negative_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 4]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ii->i') + + return ([node], [x], [y]) + + +@onnx_test() +def einsum_right_batch_diagonal_negative_test(): + x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [3, 3, 3]) + y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3, 3]) + + node = onnx.helper.make_node('Einsum', + inputs=['x'], + outputs=['y'], + equation='ii...->i...') + + return ([node], [x], [y]) + + @onnx_test() def elu_test(): x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3]) diff --git a/test/onnx/parse/einsum_negative_tests.cpp b/test/onnx/parse/einsum_negative_tests.cpp new file mode 100644 index 00000000000..973070d10ae --- /dev/null +++ b/test/onnx/parse/einsum_negative_tests.cpp @@ -0,0 +1,100 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include + +TEST_CASE(einsum_missing_equation_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_missing_equation_negative_test.onnx"); })); +} + +TEST_CASE(einsum_multiple_arrows_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_multiple_arrows_negative_test.onnx"); })); +} + +TEST_CASE(einsum_empty_term_before_arrow_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_empty_term_before_arrow_negative_test.onnx"); })); +} + +TEST_CASE(einsum_multiple_ellipses_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_multiple_ellipses_negative_test.onnx"); })); +} + +TEST_CASE(einsum_comma_in_output_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_comma_in_output_negative_test.onnx"); })); +} + +TEST_CASE(einsum_empty_term_before_comma_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_empty_term_before_comma_negative_test.onnx"); })); +} + +TEST_CASE(einsum_last_input_missing_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_last_input_missing_negative_test.onnx"); })); +} + +TEST_CASE(einsum_term_input_mismatch_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_term_input_mismatch_negative_test.onnx"); })); +} + +TEST_CASE(einsum_ellipsis_mismatch_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_ellipsis_mismatch_negative_test.onnx"); })); +} + +TEST_CASE(einsum_rank_mismatch_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_rank_mismatch_negative_test.onnx"); })); +} + +TEST_CASE(einsum_output_surplus_label_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_output_surplus_label_negative_test.onnx"); })); +} + +TEST_CASE(einsum_output_missing_ellipsis_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_output_missing_ellipsis_negative_test.onnx"); })); +} + +TEST_CASE(einsum_multiple_diagonals_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_multiple_diagonals_negative_test.onnx"); })); +} + +TEST_CASE(einsum_diagonal_dim_mismatch_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_diagonal_dim_mismatch_negative_test.onnx"); })); +} + +TEST_CASE(einsum_right_batch_diagonal_negative_test) +{ + EXPECT(test::throws([&] { read_onnx("einsum_right_batch_diagonal_negative_test.onnx"); })); +} diff --git a/test/onnx/verify/einsum_tests.cpp b/test/onnx/verify/einsum_tests.cpp new file mode 100644 index 00000000000..65346feadae --- /dev/null +++ b/test/onnx/verify/einsum_tests.cpp @@ -0,0 +1,1676 @@ +/* + * The MIT License (MIT) + * + * Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include +#include +#include +#include + +static migraphx::shape make_shape(std::vector lens) +{ + return migraphx::shape{migraphx::shape::float_type, std::move(lens)}; +} + +TEST_CASE(einsum_permute_test) +{ + migraphx::program p = read_onnx("einsum_permute_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.06727745, 0.21160052, 0.1340474, 0.74153227, 0.40337096, 0.81284493}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.06727745, 0.74153227, 0.21160052, 0.40337096, 0.1340474, 0.81284493}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_summation_test) +{ + migraphx::program p = read_onnx("einsum_summation_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.79413969, 0.45169144, 0.06846618, 0.67973967, 0.83375529, 0.44838823}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape().scalar()); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {3.2761804984270566}; + EXPECT(result_vector == gold); +} + +TEST_CASE(einsum_column_sum_test) +{ + migraphx::program p = read_onnx("einsum_column_sum_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.22235926, 0.83263138, 0.04747776, 0.96030827, 0.18947713, 0.48815767}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.18266753, 1.0221085, 0.53563543}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_row_sum_test) +{ + migraphx::program p = read_onnx("einsum_row_sum_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.17123185, 0.59008514, 0.37948294, 0.73022965, 0.22919172, 0.27532941}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.14079993, 1.23475077}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_vector_multiplication_test) +{ + migraphx::program p = read_onnx("einsum_matrix_vector_multiplication_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.4834133, 0.14106742, 0.50055824, 0.91764271, 0.95528452, 0.98199955}; + + migraphx::shape v_shape{migraphx::shape::float_type, {3}}; + std::vector v_data = {0.73961958, 0.53071864, 0.34152803}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + pm["v"] = migraphx::argument{v_shape, v_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.60336371, 1.52107419}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_matrix_multiplication_test) +{ + migraphx::program p = read_onnx("einsum_matrix_matrix_multiplication_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.45176257, 0.84846429, 0.4374105, 0.25132236, 0.70519571, 0.4902031}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x_shape, x_data.data()}; + pm["x2"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.11530901, 0.92629139, 0.92629139, 0.80076299}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_vector_dot_product_test) +{ + migraphx::program p = read_onnx("einsum_vector_dot_product_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3}}; + std::vector x_data = {0.45263196, 0.90876706, 0.9584567}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x_shape, x_data.data()}; + pm["x2"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape().scalar()); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.94937252}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_dot_product_test) +{ + migraphx::program p = read_onnx("einsum_matrix_dot_product_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.50001808, 0.12468059, 0.85439214, 0.00773521, 0.84764693, 0.87185525}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x_shape, x_data.data()}; + pm["x2"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape().scalar()); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {2.47424599}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_hadamard_product_test) +{ + migraphx::program p = read_onnx("einsum_hadamard_product_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.86162928, 0.76609605, 0.03362172, 0.21778614, 0.27204858, 0.83778314}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x_shape, x_data.data()}; + pm["x2"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.74240502, 0.58690315, 0.00113042, 0.0474308, 0.07401043, 0.70188058}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_vector_outer_product_test) +{ + migraphx::program p = read_onnx("einsum_vector_outer_product_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3}}; + std::vector x1_data = {0.35935151, 0.51298139, 0.46076789}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {5}}; + std::vector x2_data = {0.82417482, 0.17984153, 0.17680769, 0.55499376, 0.74447638}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 5})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.29616847, + 0.06462632, + 0.06353611, + 0.19943785, + 0.26752871, + 0.42278634, + 0.09225536, + 0.09069905, + 0.28470147, + 0.38190252, + 0.37975329, + 0.0828652, + 0.08146731, + 0.2557233, + 0.34303081}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_outer_product_test) +{ + migraphx::program p = read_onnx("einsum_matrix_outer_product_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x1_data = { + 0.25870501, 0.06755926, 0.18247427, 0.19436556, 0.61580192, 0.20010939}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 5}}; + std::vector x2_data = {0.30771264, + 0.86270274, + 0.55251869, + 0.35880608, + 0.3234085, + 0.24642323, + 0.82411907, + 0.33488431, + 0.69288027, + 0.21717812}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 3, 2, 5})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.0796068, 0.22318552, 0.14293935, 0.09282493, 0.0836674, 0.06375092, 0.21320373, + 0.08663625, 0.17925159, 0.05618507, 0.02078884, 0.05828356, 0.03732775, 0.02424067, + 0.02184924, 0.01664817, 0.05567687, 0.02262453, 0.04681048, 0.01467239, 0.05614964, + 0.15742105, 0.10082044, 0.06547288, 0.05901373, 0.0449659, 0.15038052, 0.06110777, + 0.12643282, 0.03962942, 0.05980874, 0.1676797, 0.1073906, 0.06973954, 0.06285947, + 0.04789619, 0.16018036, 0.06508997, 0.13467206, 0.04221195, 0.18949004, 0.53125401, + 0.34024207, 0.22095347, 0.19915557, 0.1517479, 0.50749411, 0.2062224, 0.426677, + 0.1337387, 0.06157619, 0.17263492, 0.11056418, 0.07180047, 0.06471708, 0.0493116, + 0.16491396, 0.06701349, 0.13865185, 0.04345938}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_batch_matrix_multiplication_test) +{ + migraphx::program p = read_onnx("einsum_batch_matrix_multiplication_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 2, 5}}; + std::vector x1_data = {0.99236023, 0.6848901, 0.37916487, 0.35448254, 0.06103943, + 0.88991707, 0.20816843, 0.12124124, 0.90632983, 0.88490338, + 0.93530363, 0.41393917, 0.95269137, 0.95556378, 0.63113954, + 0.87936215, 0.66831395, 0.38079353, 0.74128241, 0.05493966, + 0.12545692, 0.77418839, 0.17562823, 0.5558762, 0.95698858, + 0.49207445, 0.81934147, 0.50168285, 0.13782384, 0.71351839}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 5, 3}}; + std::vector x2_data = { + 0.72870257, 0.44635711, 0.05938103, 0.7031737, 0.52116502, 0.01719079, 0.99837568, + 0.29989025, 0.63673246, 0.39255282, 0.39796917, 0.03082538, 0.20994321, 0.11431396, + 0.06561894, 0.99749458, 0.45970296, 0.76957234, 0.98073012, 0.63154904, 0.22862209, + 0.71098086, 0.68895963, 0.92763041, 0.61730666, 0.54453456, 0.99719059, 0.05984043, + 0.64232788, 0.9754334, 0.39450223, 0.1005812, 0.11753032, 0.59885466, 0.75932222, + 0.45269589, 0.26201765, 0.39022748, 0.96507247, 0.55260731, 0.42233854, 0.50671452, + 0.60313192, 0.32628192, 0.40066181}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 2, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.73524908, + 1.06164644, + 0.32706016, + 1.45746952, + 1.00391812, + 0.21962538, + 2.64391179, + 2.27348666, + 3.26667873, + 2.26421769, + 1.52761296, + 1.97554961, + 1.44350867, + 1.21602803, + 1.19981019, + 1.32274886, + 1.15842452, + 1.2686234}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_tensor_contraction_test) +{ + migraphx::program p = read_onnx("einsum_tensor_contraction_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 3, 5, 7}}; + std::vector x1_data = {0.95685496, 0.40756636, 0.65360334, 0.96968506, + 0.50135366, 0.50255377, 0.54263245, 0.40919774, + 0.0512559, 0.18771721, 0.79265052, 0.76059609, + 0.31619353, 0.62297555, 0.70398181, 0.82378161, + 0.50388425, 0.56257752, 0.29233331, 0.98995162, + 0.38240504, 0.29803141, 0.23344604, 0.78356941, + 0.67958479, 0.10005701, 0.15588056, 0.29163352, + 0.90480928, 0.35649064, 0.77419322, 0.56301202, + 0.133201, 0.33165803, 0.37175546, 0.63959881, + 0.6058814, 0.43169871, 0.65272681, 0.17943427, + 0.30863453, 0.39029972, 0.66189176, 0.2311467, + 0.77007359, 0.33601537, 0.28087721, 0.65732174, + 0.67537887, 0.65066593, 0.89716601, 0.92921684, + 0.69368177, 0.86772161, 0.82583412, 0.32274594, + 0.0739795, 0.7573278, 0.82209441, 0.44979001, + 0.52619926, 0.68870551, 0.8586619, 0.32302478, + 0.30437449, 0.22181276, 0.41919667, 0.16351355, + 0.10825966, 0.20406509, 0.32577585, 0.89748513, + 0.78650319, 0.55487763, 0.74600253, 0.68125503, + 0.59796741, 0.75181214, 0.27655496, 0.87750203, + 0.50401991, 0.30561784, 0.82724439, 0.04727558, + 0.9224091, 0.24823561, 0.05547919, 0.93431458, + 0.51550858, 0.64800403, 0.95942825, 0.04009098, + 0.55616792, 0.71433063, 0.0753035, 0.0479713, + 0.19538077, 0.29627466, 0.47649694, 0.49999562, + 0.05246693, 0.29663604, 0.29992186, 0.62328915, + 0.00265317, 0.50642525, 0.73613139, 0.5998967, + 0.37132279, 0.02788106, 0.99984085, 0.87220473, + 0.08963238, 0.20698509, 0.17961793, 0.32962012, + 0.8046416, 0.96530006, 0.27079326, 0.07223538, + 0.72336279, 0.54842596, 0.38904735, 0.21660217, + 0.05165004, 0.60308648, 0.98992912, 0.01950237, + 0.19094762, 0.2928557, 0.18129261, 0.23948649, + 0.65970424, 0.0217831, 0.89637346, 0.25872699, + 0.98701943, 0.43783966, 0.65803132, 0.06773888, + 0.11277457, 0.68990466, 0.80914248, 0.66815968, + 0.10671669, 0.15578704, 0.78813393, 0.71601124, + 0.41304412, 0.93551562, 0.28607031, 0.16353775, + 0.54597636, 0.10405413, 0.05332971, 0.8301183, + 0.0991274, 0.1152268, 0.86477572, 0.20824363, + 0.77115011, 0.62202978, 0.87562719, 0.17638816, + 0.00798768, 0.46176706, 0.33432177, 0.93926911, + 0.60557399, 0.38483151, 0.23797486, 0.83815198, + 0.27293845, 0.62067518, 0.56702013, 0.80762545, + 0.47669687, 0.13692723, 0.40838777, 0.3148337, + 0.55255245, 0.24319153, 0.39330312, 0.22781179, + 0.101221, 0.80367016, 0.08707603, 0.90069816, + 0.28595044, 0.57599756, 0.71276499, 0.04032091, + 0.50101916, 0.94582167, 0.2091183, 0.17698968, + 0.72687874, 0.08878026, 0.16422912, 0.34543801, + 0.28480515, 0.8740834, 0.18413319, 0.60564407, + 0.94070861, 0.21143538, 0.2715485, 0.76848231, + 0.0064918, 0.36614132 + + }; + + migraphx::shape x2_shape{migraphx::shape::float_type, {1, 3, 3, 7, 5}}; + std::vector x2_data = { + 0.31719105, 0.44506343, 0.59957066, 0.00373946, 0.06497482, 0.30887562, 0.04364479, + 0.09203816, 0.0778086, 0.58357676, 0.49651904, 0.10000999, 0.16565024, 0.46539611, + 0.82516851, 0.64563229, 0.26637135, 0.2141455, 0.69189904, 0.75060041, 0.75433425, + 0.69215069, 0.18186255, 0.89800939, 0.93269204, 0.63033347, 0.9423835, 0.90530682, + 0.07135205, 0.57649693, 0.44479805, 0.94513207, 0.89856664, 0.79120729, 0.63383186, + 0.97271015, 0.69211656, 0.91893391, 0.07601606, 0.90099522, 0.31441974, 0.70932527, + 0.68997715, 0.33528514, 0.24921017, 0.09703337, 0.54714714, 0.98431729, 0.27753988, + 0.78936545, 0.51031898, 0.30604168, 0.53546681, 0.95644451, 0.79345859, 0.3444766, + 0.19356174, 0.41127976, 0.15782141, 0.65660564, 0.76540504, 0.21572256, 0.29864542, + 0.01153175, 0.06708682, 0.82473386, 0.45034386, 0.96212735, 0.5969872, 0.35962495, + 0.60466663, 0.52630816, 0.73655946, 0.11649375, 0.32456538, 0.64199728, 0.08340919, + 0.2237889, 0.09521117, 0.91767416, 0.22842615, 0.46863323, 0.00293057, 0.13495504, + 0.68305119, 0.80013148, 0.24702202, 0.83619373, 0.94419611, 0.25176846, 0.74292949, + 0.68404465, 0.23097011, 0.09664962, 0.44346347, 0.31467353, 0.37099949, 0.54412241, + 0.76552126, 0.1443158, 0.03555697, 0.43584746, 0.10575715, 0.1046359, 0.43291613, + 0.03007743, 0.55544576, 0.80022343, 0.42529416, 0.47484557, 0.84443037, 0.99362024, + 0.78040286, 0.16341681, 0.98059931, 0.64114384, 0.27438947, 0.51972672, 0.24844974, + 0.11630196, 0.86696682, 0.62380654, 0.23221499, 0.93125653, 0.53386878, 0.14323035, + 0.46524576, 0.24347234, 0.43592108, 0.68938894, 0.83452471, 0.67473429, 0.11704585, + 0.01223517, 0.61133307, 0.19640497, 0.94062148, 0.09548036, 0.27914148, 0.28533241, + 0.32062872, 0.27619432, 0.18284111, 0.73646915, 0.07043039, 0.10841211, 0.25284529, + 0.73262578, 0.63395762, 0.75505585, 0.66397536, 0.60934204, 0.17561379, 0.44185177, + 0.90064761, 0.87593443, 0.04697443, 0.90844936, 0.4878133, 0.17061924, 0.37868238, + 0.03991319, 0.99918374, 0.05644218, 0.11533688, 0.36478255, 0.74207249, 0.02537966, + 0.73720329, 0.41510019, 0.87408442, 0.0902388, 0.77849296, 0.22027469, 0.66811554, + 0.535826, 0.40478544, 0.47295354, 0.53722756, 0.81697433, 0.17400588, 0.52628511, + 0.57033592, 0.74645826, 0.58147372, 0.25898702, 0.03268815, 0.37127404, 0.04316943, + 0.86187713, 0.33330374, 0.58282901, 0.32484663, 0.8295674, 0.34023535, 0.48430125, + 0.5626468, 0.48469659, 0.16184832, 0.71399316, 0.5417521, 0.11897383, 0.84953376, + 0.98761605, 0.58273874, 0.89537346, 0.83282794, 0.78849938, 0.42528756, 0.08624209, + 0.7689597, 0.92518944, 0.25278458, 0.0732656, 0.0057378, 0.74097687, 0.13263284, + 0.73757523, 0.01510422, 0.8650508, 0.21755823, 0.38417346, 0.77236815, 0.80464568, + 0.23389132, 0.24982259, 0.3034747, 0.99357576, 0.69974824, 0.62271656, 0.43386392, + 0.3517672, 0.01739671, 0.54493487, 0.07725586, 0.75756086, 0.86409372, 0.50906544, + 0.87797418, 0.41355064, 0.11812738, 0.9809903, 0.67759122, 0.44601677, 0.53664097, + 0.75512155, 0.27589464, 0.12141359, 0.74533628, 0.95179317, 0.31788316, 0.41200016, + 0.81161753, 0.84035926, 0.42866542, 0.97692811, 0.14777789, 0.54256825, 0.03691842, + 0.71298109, 0.27676914, 0.31342084, 0.09905633, 0.01056144, 0.28488026, 0.39330704, + 0.07871612, 0.61847332, 0.48494692, 0.14455078, 0.53627478, 0.78087393, 0.24899241, + 0.78534409, 0.29844719, 0.33439453, 0.62448919, 0.21187341, 0.21381023, 0.25570138, + 0.67919933, 0.73611559, 0.45109776, 0.25360901, 0.17702297, 0.41635495, 0.80213947, + 0.01236559, 0.0112422, 0.03389217, 0.87942468, 0.25273501, 0.511234, 0.82734509, + 0.58747506, 0.31687443, 0.89906645, 0.96090575, 0.04004779, 0.02298561, 0.10433042, + 0.7104134, 0.79670464, 0.9930637, 0.5446879, 0.06004139, 0.41158374, 0.17676018, + 0.10056314, 0.01345726, 0.82521847, 0.76125409, 0.17694037, 0.05363529, 0.32265118}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 7, 1, 3, 7})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 4.37385737, 3.07363193, 3.61847664, 4.34283839, 4.26894546, 4.00093768, 4.51345157, + 3.28585485, 4.98955956, 3.40062413, 4.32430907, 3.58727315, 4.01024983, 4.04214073, + 3.71183284, 4.04117845, 3.9304425, 4.05446572, 3.19462145, 3.75153593, 3.63370359, + 3.6737565, 2.89999382, 3.0174889, 4.35349886, 3.165444, 3.10185148, 3.86251195, + 3.3873455, 4.06622752, 2.90101219, 3.93475191, 3.00084537, 3.36253104, 3.50215565, + 3.2272778, 3.63297086, 4.11360191, 2.55025226, 2.89909597, 2.8134455, 2.91506006, + 3.7938589, 3.12994095, 3.93469812, 5.19912284, 4.38534872, 3.50334177, 4.71274384, + 3.59957887, 4.82387001, 2.82827241, 5.04315375, 3.42817516, 3.97827684, 4.0792739, + 3.73622444, 4.59885202, 4.20690004, 3.39733812, 3.56861724, 4.18875149, 3.80445766, + 4.34760619, 2.83154296, 3.39897749, 4.91619741, 4.55085299, 4.02356989, 4.83137925, + 3.49172193, 5.09758452, 3.46814603, 4.8534725, 3.58561246, 4.17459184, 4.57103074, + 4.31924652, 3.86027525, 4.33725934, 3.88334716, 3.51074837, 4.2163728, 3.76365513, + 3.13004972, 2.27159717, 2.35669807, 3.25755431, 2.85534261, 2.56412151, 3.19951963, + 2.50814311, 3.53231318, 2.20002443, 3.12059903, 2.63204045, 2.90076584, 3.36582992, + 3.06683373, 2.76686275, 2.77506122, 2.09060484, 2.37978869, 2.59300135, 2.73194814, + 4.12941618, 3.09876995, 3.26773346, 4.15566501, 3.49722972, 3.46654242, 4.2842499, + 3.77358659, 4.61660476, 3.14276911, 3.88478492, 3.36244681, 3.70141846, 3.77154536, + 3.59743975, 4.07663608, 3.81503321, 3.53650377, 3.19912915, 3.41346893, 3.6696098, + 3.22521498, 2.26604057, 2.16539957, 4.2136737, 2.91410526, 3.02978768, 3.33819415, + 2.9409972, 3.83464087, 2.65153712, 3.32360785, 2.24438948, 3.95703137, 3.35290512, + 3.41760415, 2.86825506, 3.08274974, 2.72484017, 2.65706605, 3.36092398, 2.83630318, + 2.89697041, 2.50152336, 2.73918816, 4.5120665, 3.40255688, 2.21408714, 2.82712268, + 3.04826657, 3.41090928, 2.96534728, 3.52745057, 2.24957446, 3.84521048, 3.08574989, + 3.28188229, 2.31822221, 3.76298328, 2.57778028, 3.19081461, 3.07155158, 2.73609241, + 4.19950589, 3.6560231, 3.78387066, 4.79181063, 3.83391543, 3.55914169, 4.5795992, + 3.80991087, 5.12966262, 3.81299104, 4.21955081, 3.59584019, 4.29810986, 3.70353926, + 3.70364291, 4.26908068, 3.98312417, 3.12472346, 3.16217195, 3.4642648, 3.22122407, + 2.62355294, 1.82932863, 1.87920164, 2.36533037, 2.06395846, 2.33422825, 2.78131656, + 1.83772458, 2.43196754, 2.45650722, 2.37074638, 1.36516771, 2.47311739, 1.85973378, + 2.28547527, 2.22058881, 2.42265217, 1.82521576, 1.42674238, 2.63853633, 2.09125692, + 3.43987729, 2.19115419, 2.93461373, 3.85600443, 3.76977612, 3.15357479, 3.3520207, + 2.6665599, 4.023041, 2.68187355, 3.41405847, 2.72865504, 3.23944437, 3.64514952, + 3.347772, 3.08780622, 3.59354671, 3.2772289, 2.50492638, 2.77853552, 3.07724088, + 3.03408917, 2.45574117, 2.5493586, 3.48528482, 2.74493899, 2.611099, 3.26765525, + 2.93502233, 3.93585413, 2.32960219, 3.09824088, 3.03519943, 3.21090064, 3.3114777, + 2.58394431, 2.2187237, 3.00954904, 2.23092399, 2.83426168, 2.27217761, 2.5014613, + 3.19291058, 2.17091072, 3.02885277, 4.41008881, 4.12811972, 3.61970552, 3.53615268, + 2.78509447, 4.861919, 2.54172549, 4.17995171, 2.56407684, 4.31953876, 3.98183007, + 4.18525975, 3.4355, 3.32306034, 2.80758129, 3.17616352, 3.6386068, 3.45497304, + 3.46339678, 2.31062665, 2.98872364, 4.14619218, 3.33730406, 2.814647, 4.28392461, + 2.85391039, 3.99487077, 3.22812695, 4.24891978, 2.57924025, 3.05409494, 3.2767709, + 3.64664984, 3.49454643, 3.69300505, 2.42169066, 2.93327166, 3.5987843, 2.52333694}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_diagonal_test) +{ + migraphx::program p = read_onnx("einsum_matrix_diagonal_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x_data = {0.47776573, + 0.63448645, + 0.89651875, + 0.23679368, + 0.99918665, + 0.27613904, + 0.57251725, + 0.30676534, + 0.01097199}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.47776573, 0.99918665, 0.01097199}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_batch_matrix_diagonal_test) +{ + migraphx::program p = read_onnx("einsum_batch_matrix_diagonal_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3, 3, 3}}; + std::vector x_data = { + 0.28876273, 0.35989686, 0.87975286, 0.4636637, 0.42481418, 0.15188883, 0.19336828, + 0.24970656, 0.85099181, 0.26858692, 0.70659505, 0.28920736, 0.44962699, 0.02807534, + 0.36833006, 0.41504379, 0.00211731, 0.78780266, 0.23482163, 0.16543172, 0.29376553, + 0.8090205, 0.08804924, 0.16924385, 0.07311857, 0.52459502, 0.66098314}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.28876273, + 0.42481418, + 0.85099181, + 0.26858692, + 0.02807534, + 0.78780266, + 0.23482163, + 0.08804924, + 0.66098314}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_3d_diagonal_test) +{ + migraphx::program p = read_onnx("einsum_3d_diagonal_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3, 3, 3}}; + std::vector x_data = { + 0.0865182, 0.38083222, 0.67805353, 0.0585945, 0.74171412, 0.1304194, 0.00526353, + 0.43741816, 0.95075246, 0.56668103, 0.66687595, 0.73297639, 0.06474291, 0.27579944, + 0.13203794, 0.01323116, 0.18004087, 0.67450993, 0.86813684, 0.88677573, 0.67944271, + 0.38633242, 0.92832963, 0.02932602, 0.45013121, 0.36562681, 0.0411488}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.0865182, 0.27579944, 0.0411488}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_diag_vector_multiply_test) +{ + migraphx::program p = read_onnx("einsum_diag_vector_multiply_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x1_data = {0.8628764, + 0.96045198, + 0.14103307, + 0.89249896, + 0.97520951, + 0.7015561, + 0.06408759, + 0.59921615, + 0.76173894}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3}}; + std::vector x2_data = {0.79284103, 0.61505765, 0.70876231}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.68412382, 0.59981008, 0.53989185}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_trace_test) +{ + migraphx::program p = read_onnx("einsum_matrix_trace_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x_data = {0.90812557, + 0.40719192, + 0.71678312, + 0.78176503, + 0.57731702, + 0.23585615, + 0.06292936, + 0.46016886, + 0.37753559}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape().scalar()); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.86297818}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_matrix_trace_implicit_test) +{ + migraphx::program p = read_onnx("einsum_matrix_trace_implicit_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x_data = {0.78947898, + 0.56206428, + 0.18337164, + 0.58397232, + 0.68795372, + 0.11615468, + 0.22114439, + 0.84875979, + 0.08248506}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape().scalar()); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.559917763052301}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_2d_3d_multiplication_test) +{ + migraphx::program p = read_onnx("einsum_2d_3d_multiplication_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x1_data = {0.77117604, + 0.10042859, + 0.68555583, + 0.93192629, + 0.39255794, + 0.99285767, + 0.88129697, + 0.56599014, + 0.03828527}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 4, 5}}; + std::vector x2_data = { + 0.19665868, 0.49490562, 0.73175228, 0.89251999, 0.08735652, 0.25944536, 0.37003717, + 0.09387889, 0.75490936, 0.81022481, 0.9987667, 0.04082882, 0.26160334, 0.85590193, + 0.80221833, 0.11203218, 0.31701572, 0.45973754, 0.3452479, 0.85151585, 0.86455042, + 0.19206577, 0.09922319, 0.58911914, 0.15871974, 0.61540675, 0.21682354, 0.69036427, + 0.77451157, 0.91950467, 0.52659111, 0.80857867, 0.63179264, 0.10085509, 0.96412482, + 0.42412458, 0.0330562, 0.13279482, 0.39372801, 0.80698385, 0.1182876, 0.75943908, + 0.59421519, 0.66827559, 0.09009574, 0.66649037, 0.43015355, 0.37795428, 0.11304274, + 0.37406792, 0.33043231, 0.32357327, 0.38079892, 0.42659918, 0.55308245, 0.49437723, + 0.95926415, 0.99762983, 0.70624046, 0.24298556}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 4, 5})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.3195768, 0.92158614, 0.98164236, 1.20559466, 0.14507291, 0.71879884, 0.60203336, + 0.40083822, 0.73744823, 0.97361497, 1.04963956, 0.33451816, 0.5262512, 0.96263736, + 1.09464615, 0.46791396, 0.90542384, 1.05180592, 0.78995572, 0.90429304, 0.64010028, + 1.29062741, 1.31086115, 1.72652878, 0.23316878, 1.14509684, 0.85704442, 0.73375098, + 1.1197959, 1.48742487, 1.46556673, 0.67672563, 0.86988939, 1.26078125, 1.67521536, + 0.76174542, 1.26082452, 1.47107559, 1.17750291, 1.351588, 0.66717038, 0.57394148, + 0.72380011, 1.1455959, 0.17027018, 0.60247933, 0.46530117, 0.48794463, 1.10799312, + 1.24880054, 1.19090614, 0.50601796, 0.60271763, 0.82771923, 1.27385264, 0.35771131, + 0.33482015, 0.51852039, 0.5541507, 1.21648601}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_element_wise_multiplication_and_row_sum_test) +{ + migraphx::program p = read_onnx("einsum_element_wise_multiplication_and_row_sum_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3}}; + std::vector x1_data = {0.66866322, 0.01371844, 0.85036724}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 4}}; + std::vector x2_data = {0.72487469, + 0.24707426, + 0.8735483, + 0.04525622, + 0.52379655, + 0.32056461, + 0.51596208, + 0.10696902, + 0.08682559, + 0.95054461, + 0.16377484, + 0.61029108}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.2642773, 0.02012896, 1.54038595}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_broadcast_test) +{ + migraphx::program p = read_onnx("einsum_broadcast_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 1}}; + std::vector x1_data = {0.39430774, 0.13914788, 0.48328062}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2}}; + std::vector x2_data = {0.71903989, 0.19490621, 0.56431641, 0.09180231}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.50603732, 0.11305139, 0.17857631, 0.03989488, 0.62022123, 0.13856067}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_3d_broadcast_test) +{ + migraphx::program p = read_onnx("einsum_3d_broadcast_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {1, 3, 1}}; + std::vector x1_data = {0.6306304, 0.92378069, 0.09156996}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 4}}; + std::vector x2_data = {0.07905765, + 0.27054262, + 0.42684231, + 0.96296392, + 0.20374812, + 0.95058412, + 0.26180494, + 0.65115589, + 0.19317509, + 0.60143068, + 0.54864825, + 0.36401264, + 0.20867305, + 0.90065616, + 0.26377379, + 0.16009663}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 3, 4})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.17834592, 0.77007964, 0.43428189, 1.01791302, 0.26125051, + 1.1280533, 0.63615903, 1.49109271, 0.02589651, 0.11181853, + 0.0630594, 0.14780488, 0.25341766, 0.94726162, 0.51233803, + 0.33051924, 0.37121956, 1.38759882, 0.75049978, 0.48416203, + 0.03679722, 0.13754603, 0.07439345, 0.04799266}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_3d_opposite_broadcast_test) +{ + migraphx::program p = read_onnx("einsum_3d_opposite_broadcast_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {1, 3, 2}}; + std::vector x1_data = { + 0.89996837, 0.62380433, 0.38499382, 0.82576167, 0.71647773, 0.74190884}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 1, 4}}; + std::vector x2_data = {0.83902045, + 0.3002842, + 0.46254963, + 0.42754638, + 0.54720295, + 0.6184629, + 0.99604709, + 0.94529622}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 3, 4})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.27847646, 0.45756486, 0.7048205, 0.65148351, 1.01584862, + 0.36357074, 0.56003451, 0.51765413, 1.22361616, 0.43793044, + 0.67457618, 0.62352791, 0.83381291, 0.94239689, 1.51774936, + 1.44041657, 0.66252897, 0.74880736, 1.20596948, 1.14452259, + 0.79803343, 0.90195799, 1.4526217, 1.37860731}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_3_inputs_test) +{ + migraphx::program p = read_onnx("einsum_3_inputs_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 2, 2}}; + std::vector x1_data = {0.78808491, + 0.6661874, + 0.4170594, + 0.80972418, + 0.22687053, + 0.52144567, + 0.70463225, + 0.8934412}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2}}; + std::vector x2_data = {0.98518483, 0.61526655, 0.89011461, 0.02600793}; + + migraphx::shape x3_shape{migraphx::shape::float_type, {2, 2, 2}}; + std::vector x3_data = {0.04135729, + 0.36723732, + 0.82196749, + 0.35332048, + 0.92673273, + 0.50014512, + 0.91129541, + 0.97557965}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + pm["x3"] = migraphx::argument{x3_shape, x3_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.54312876, + 0.59155446, + 1.19274407, + 0.56709538, + 2.79449706, + 1.61644006, + 2.15997517, + 1.5496049}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_bilinear_transformation_test) +{ + migraphx::program p = read_onnx("einsum_bilinear_transformation_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x1_data = { + 0.34096073, 0.38172764, 0.36543085, 0.28104558, 0.0556053, 0.23574725}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {5, 3, 7}}; + std::vector x2_data = { + 0.27525548, 0.55922006, 0.28504873, 0.48681888, 0.7527785, 0.76094518, 0.99365312, + 0.76470274, 0.44406814, 0.24103473, 0.25141801, 0.51590554, 0.78834812, 0.96411404, + 0.01325493, 0.21739615, 0.25936655, 0.23025532, 0.85856546, 0.33609085, 0.33413049, + 0.60163776, 0.61253489, 0.84028869, 0.2593441, 0.53611056, 0.05595679, 0.30129639, + 0.44404875, 0.71431542, 0.95123376, 0.71387725, 0.05743836, 0.35266739, 0.53284905, + 0.07799213, 0.3639559, 0.72199632, 0.0920087, 0.71882463, 0.09804492, 0.79378518, + 0.2149909, 0.62017677, 0.57284093, 0.1480283, 0.65038853, 0.47830376, 0.18202239, + 0.37421293, 0.65768777, 0.2465394, 0.80183419, 0.65855262, 0.40956847, 0.36430994, + 0.4464513, 0.65720017, 0.29603235, 0.21994904, 0.31797431, 0.64774027, 0.71807814, + 0.67456442, 0.37665375, 0.84645173, 0.10965697, 0.57469259, 0.68129292, 0.28780513, + 0.50772577, 0.67820423, 0.92720621, 0.52615601, 0.5507361, 0.55419857, 0.37244191, + 0.52378246, 0.29057448, 0.14684616, 0.60456568, 0.79814119, 0.51783395, 0.69921548, + 0.12310853, 0.18934048, 0.98081268, 0.51493817, 0.1279986, 0.3868668, 0.42396674, + 0.04160038, 0.56299233, 0.40414454, 0.73163413, 0.3126024, 0.75276068, 0.88847181, + 0.96703089, 0.34357903, 0.34495332, 0.73431682, 0.01318382, 0.15232141, 0.88949811}; + + migraphx::shape x3_shape{migraphx::shape::float_type, {2, 7}}; + std::vector x3_data = {0.22897831, + 0.68897913, + 0.55615068, + 0.77395085, + 0.44879247, + 0.42608676, + 0.45303661, + 0.04397996, + 0.44780993, + 0.98314993, + 0.32980751, + 0.57814391, + 0.91010863, + 0.53235916}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + pm["x3"] = migraphx::argument{x3_shape, x3_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 5})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {1.82915577, + 1.88971744, + 1.84172272, + 2.0310065, + 1.91888787, + 1.11119172, + 1.03903856, + 1.03828167, + 1.17052253, + 0.98080627}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_ellipsis_test) +{ + migraphx::program p = read_onnx("einsum_ellipsis_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 3, 2}}; + std::vector x1_data = {0.04249489, + 0.55406728, + 0.19941733, + 0.73459709, + 0.85098409, + 0.57610406, + 0.20316778, + 0.43422309, + 0.83122325, + 0.26004847, + 0.75534733, + 0.96759149}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 4, 2}}; + std::vector x2_data = {0.92094713, + 0.79225215, + 0.74592229, + 0.44132894, + 0.33642643, + 0.7196803, + 0.52841641, + 0.19646611, + 0.85507066, + 0.69714208, + 0.61092676, + 0.10550163, + 0.1895, + 0.67025347, + 0.01897078, + 0.63833372}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 4, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.51290222, 0.4636753, 0.37019241, 0.13547507, 0.11929215, + 0.43725538, 0.03296608, 0.31709483, 0.81178524, 0.83982914, + 0.59753485, 0.39427841, 0.20629541, 0.77251339, 0.11931127, + 0.3293049, 1.27632103, 1.27297429, 0.98672538, 0.43543911, + 0.39546526, 1.19214015, 0.4606031, 0.76604642}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_ellipsis_multidim_test) +{ + migraphx::program p = read_onnx("einsum_ellipsis_multidim_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 2, 3, 2}}; + std::vector x1_data = { + 0.98667534, 0.26757447, 0.97607513, 0.82605353, 0.49444144, 0.01681133, + 0.77774229, 0.75994986, 0.11125708, 0.1130032, 0.63612414, 0.1262558, + 0.58148571, 0.03373236, 0.97679914, 0.96362191, 0.81985409, 0.49089541, + 0.20980484, 0.54484447, 0.86032374, 0.03736589, 0.21250823, 0.61016893, + 0.35060633, 0.66305752, 0.15096292, 0.13044199, 0.85426735, 0.35063898, + 0.62050398, 0.42931425, 0.78397709, 0.30081415, 0.13172537, 0.97078161}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 4, 3, 2}}; + std::vector x2_data = { + 0.57040198, 0.53550748, 0.45591515, 0.56752322, 0.50931221, 0.81220443, 0.00733681, + 0.3914752, 0.56944863, 0.57929432, 0.7376043, 0.07466457, 0.62632235, 0.93106704, + 0.75973908, 0.06791374, 0.4220263, 0.30228231, 0.12644542, 0.17381266, 0.6764365, + 0.7179303, 0.78075755, 0.45183063, 0.03752228, 0.54431596, 0.08627314, 0.8015124, + 0.74214063, 0.99574465, 0.26469823, 0.77350918, 0.29052469, 0.38834888, 0.13962948, + 0.7043763, 0.98259846, 0.59013313, 0.67843048, 0.60183051, 0.75242782, 0.49615042, + 0.74438165, 0.99080336, 0.09669321, 0.63712064, 0.45491748, 0.81021691}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 4, 3, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.57284157, 0.83013964, 0.26801834, 0.55576872, 0.67065001, 0.93146345, 0.07806553, + 0.89229501, 0.34092632, 0.3331285, 0.35119111, 0.34872845, 0.88089507, 1.1726018, + 0.46466248, 0.34215266, 0.64686801, 0.40057183, 0.3239381, 0.88814233, 0.39659985, + 0.49775691, 0.57537499, 0.62820037, 0.58775059, 0.12108844, 0.52847222, 0.51820293, + 0.17369356, 0.93628374, 0.22581618, 0.1309634, 0.83619289, 0.51289166, 0.12956445, + 0.27042167, 1.4230166, 0.17027473, 1.39586296, 0.08091573, 0.1618585, 0.38623148, + 0.73831932, 0.13130184, 0.75391828, 0.64145906, 0.17720578, 0.59794957, 0.28266118, + 0.40937228, 0.41613499, 0.60966132, 0.69531223, 1.07363852, 0.00807755, 0.34668684, + 0.60948202, 0.36006323, 0.67907081, 0.69363078, 0.32619851, 0.66678194, 0.9559136, + 0.38165051, 0.62435381, 0.52147196, 0.0750339, 0.2356611, 0.60204548, 0.54131732, + 0.82648748, 0.84606124}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_ellipsis_zero_test) +{ + migraphx::program p = read_onnx("einsum_ellipsis_zero_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 3, 2}}; + std::vector x1_data = {0.66350493, + 0.23942871, + 0.92238018, + 0.62110235, + 0.32076099, + 0.96309398, + 0.52844268, + 0.34438311, + 0.65616714, + 0.20566103, + 0.27886952, + 0.65970714}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {4, 3, 2}}; + std::vector x2_data = {0.80308382, 0.54059368, 0.37399569, 0.1005526, 0.76379294, + 0.67375565, 0.35891999, 0.84426002, 0.09043876, 0.90878662, + 0.94432809, 0.79103325, 0.1105734, 0.4352484, 0.33998431, + 0.05210384, 0.99372845, 0.38982222, 0.99214395, 0.66699468, + 0.11299297, 0.64553585, 0.39052278, 0.66001129}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 2, 4})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.66228372, 0.44028527, 0.17757696, 0.81799008, 0.61055509, + 0.48041753, 0.2083239, 0.7539929, 0.40741967, 0.64786843, + 0.34595661, 0.50516631, 0.26608343, 0.24624494, 0.23380226, + 0.20690385, 0.89388499, 1.06474297, 0.69418476, 0.76091737, + 0.65747998, 0.7851946, 0.53428908, 0.54431906}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_ellipsis_implicit_form_test) +{ + migraphx::program p = read_onnx("einsum_ellipsis_implicit_form_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 2, 3, 2}}; + std::vector x1_data = { + 0.23521871, 0.98377414, 0.89254812, 0.97761717, 0.05081862, 0.68622971, + 0.10890005, 0.2268622, 0.49600579, 0.2676526, 0.42904501, 0.37749836, + 0.79665579, 0.95331325, 0.86434957, 0.79121832, 0.28486632, 0.12174202, + 0.70187, 0.14436634, 0.03751946, 0.61306538, 0.13534059, 0.27080258, + 0.2651645, 0.29432102, 0.04611007, 0.58113752, 0.24878511, 0.17095365, + 0.0815941, 0.29892262, 0.11160549, 0.27367858, 0.36888151, 0.16212635}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 4, 3, 2}}; + std::vector x2_data = { + 0.44591065, 0.88061357, 0.701782, 0.57534276, 0.65403074, 0.81415861, 0.68154153, + 0.55451648, 0.81680318, 0.54274041, 0.44267802, 0.204258, 0.38894043, 0.26743358, + 0.9689122, 0.16832771, 0.70924974, 0.13868791, 0.52965739, 0.41611994, 0.59251147, + 0.03544427, 0.86559268, 0.68808533, 0.01154378, 0.50244414, 0.20684438, 0.15988138, + 0.28233231, 0.10307361, 0.90725685, 0.94720523, 0.42599834, 0.93168414, 0.82026755, + 0.22099913, 0.46835316, 0.90021715, 0.5152653, 0.51409383, 0.33123306, 0.3003667, + 0.07429799, 0.79805729, 0.17255054, 0.29718065, 0.92965361, 0.36905318, 0.69877278, + 0.77362919, 0.14773139, 0.23016429, 0.02718606, 0.39449785, 0.93450467, 0.34742404, + 0.35372862, 0.07290892, 0.79728572, 0.15650619, 0.53751043, 0.44802221, 0.77646259, + 0.65170074, 0.49278255, 0.36228251, 0.17940834, 0.66284468, 0.15208601, 0.83560697, + 0.51165061, 0.14598895}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 4, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {2.75198731, 1.33836971, 2.12812296, 1.01745957, 1.51515599, + 0.98532013, 1.61362211, 1.08658677, 0.88644536, 0.2525403, + 2.99170324, 1.53155007, 2.21435937, 0.91935904, 1.51402355, + 0.58178573, 0.62775842, 0.4417366, 0.63384035, 0.55901237, + 0.87345202, 0.68330958, 0.88752551, 0.67084639}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_ellipsis_scalar_multiplication_test) +{ + migraphx::program p = read_onnx("einsum_ellipsis_scalar_multiplication_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {2, 3}}; + std::vector x_data = { + 0.2766607, 0.76752867, 0.28231295, 0.30409753, 0.37753377, 0.73576867}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x_shape, x_data.data()}; + pm["x2"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.07654114, 0.58910026, 0.0797006, 0.09247531, 0.14253175, 0.54135554}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_1_test) +{ + migraphx::program p = read_onnx("einsum_common_1_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x1_data = {0.35498396, + 0.92145607, + 0.81807284, + 0.37990484, + 0.22314499, + 0.90337144, + 0.02492543, + 0.36666091, + 0.33262049, + 0.37052745, + 0.01950226, + 0.83690205, + 0.61551503, + 0.55244304, + 0.62696715, + 0.74933671}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x2_data = {0.44903857, + 0.47304138, + 0.63679145, + 0.78101353, + 0.41525864, + 0.57356733, + 0.83636479, + 0.01236986, + 0.10068789, + 0.46623025, + 0.29825429, + 0.56816588, + 0.00558546, + 0.91900877, + 0.74972012, + 0.4509882}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2, 2, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.59528833, + 0.52753278, + 0.67592725, + 0.61080723, + 0.81765261, + 0.30223943, + 0.68890669, + 0.0253823, + 0.20624196, + 0.31954056, + 0.34237582, + 0.51113793, + 0.48131582, + 0.6127432, + 0.39205418, + 0.8079919}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_2_test) +{ + migraphx::program p = read_onnx("einsum_common_2_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x1_data = {0.77858647, + 0.8659616, + 0.89981848, + 0.45454779, + 0.27364842, + 0.69225887, + 0.01304595, + 0.14404551, + 0.47394644, + 0.39058325, + 0.977306, + 0.90298946, + 0.01456065, + 0.70478062, + 0.92796867, + 0.00407166}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x2_data = {0.12299003, + 0.42677007, + 0.84213152, + 0.26884624, + 0.85685616, + 0.53033816, + 0.61543941, + 0.00586418, + 0.79310638, + 0.66468861, + 0.22797244, + 0.32789713, + 0.01537162, + 0.28328088, + 0.39257709, + 0.83954883}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {2.51890769, + 1.78883817, + 2.11484282, + 1.38804189, + 2.81881969, + 1.09537142, + 3.0398521, + 1.07377846}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_3_test) +{ + migraphx::program p = read_onnx("einsum_common_3_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x1_data = {0.22151958, + 0.19284961, + 0.8126814, + 0.02360209, + 0.99137254, + 0.0550951, + 0.34794661, + 0.03083101, + 0.03127261, + 0.04609321, + 0.02422953, + 0.30878066, + 0.42532866, + 0.02191982, + 0.34276933, + 0.66997637}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 2, 2}}; + std::vector x2_data = {0.76051399, + 0.92365044, + 0.14703117, + 0.07201171, + 0.81879942, + 0.91050362, + 0.90936259, + 0.94197062, + 0.73971579, + 0.08809791, + 0.17392649, + 0.36623704, + 0.23731799, + 0.67476051, + 0.97480632, + 0.35175013}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2, 2})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.62099637, + 2.20329706, + 0.6457657, + 1.61829179, + 0.4142793, + 0.52881853, + 2.00689201, + 2.20807455}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_4_test) +{ + migraphx::program p = read_onnx("einsum_common_4_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {2, 2, 3, 2}}; + std::vector x1_data = {0.56144416, 0.70795103, 0.10800643, 0.85461707, 0.53053745, + 0.42957473, 0.2801385, 0.91878799, 0.51160639, 0.90354742, + 0.83131358, 0.84237736, 0.01078178, 0.75952001, 0.74426499, + 0.70506648, 0.65528756, 0.54674358, 0.3923791, 0.33558121, + 0.18089114, 0.41982192, 0.50568299, 0.83929267}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 4, 2}}; + std::vector x2_data = { + 0.71114916, 0.10373848, 0.85011488, 0.08836512, 0.01426097, 0.63389153, 0.3714056, + 0.42466907, 0.5412509, 0.12682203, 0.88595126, 0.09839624, 0.10689487, 0.1196194, + 0.5887543, 0.51683836, 0.50278953, 0.94187525, 0.98227159, 0.57961915, 0.12739494, + 0.59140361, 0.34997506, 0.43158845, 0.60170823, 0.06098434, 0.24573198, 0.15357368, + 0.99864135, 0.92721276, 0.81457582, 0.49836327}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({2, 2, 3, 4})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.4727123, 0.53985021, 0.4567709, 0.50916841, 0.16546536, 0.16733621, 0.5432748, + 0.40304363, 0.42185469, 0.48897721, 0.27986976, 0.37947168, 0.26814778, 0.33859434, + 0.13985024, 0.63979763, 0.39149714, 0.54216399, 0.1627699, 0.76819843, 0.55678123, + 0.81939007, 0.18962783, 0.92481237, 0.72079407, 0.45082298, 0.45055642, 0.33157342, + 1.03829331, 1.13974038, 0.51179445, 0.56477273, 0.84443597, 0.9605734, 0.40682645, + 0.46530252, 0.25656293, 0.14795654, 0.70300118, 0.48686388, 0.13444625, 0.10892434, + 0.56990961, 0.35657337, 0.35545733, 0.25315575, 1.28319881, 0.83018978}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_5_test) +{ + migraphx::program p = read_onnx("einsum_common_5_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 2, 3, 2}}; + std::vector x1_data = { + 0.54568637, 0.37482154, 0.04235242, 0.65373642, 0.33087863, 0.31717808, + 0.95558492, 0.04292704, 0.41062909, 0.15678733, 0.42269055, 0.52439126, + 0.79640916, 0.84653066, 0.07768967, 0.27527369, 0.89984151, 0.51484382, + 0.16384989, 0.91806877, 0.21812376, 0.11357245, 0.54908942, 0.31401177, + 0.65491277, 0.28771509, 0.78575018, 0.79237873, 0.46273786, 0.76982106, + 0.09757821, 0.22590816, 0.07358939, 0.10590534, 0.83561014, 0.46470277}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 4, 3, 2}}; + std::vector x2_data = { + 0.8106741, 0.59851071, 0.01563264, 0.59371323, 0.92144669, 0.13810113, 0.30200611, + 0.04771728, 0.27000965, 0.15975859, 0.79296359, 0.8423782, 0.14653939, 0.97910498, + 0.92130026, 0.98351422, 0.36302145, 0.34644287, 0.552259, 0.8590351, 0.32266987, + 0.05450608, 0.37737409, 0.28476044, 0.12639262, 0.68674546, 0.36657116, 0.95912161, + 0.25702418, 0.36058756, 0.68556443, 0.71449807, 0.15664292, 0.14519584, 0.96284277, + 0.08696439, 0.21784017, 0.35219703, 0.33682869, 0.65550335, 0.58188946, 0.15934059, + 0.4108815, 0.73728006, 0.18921976, 0.00133056, 0.56921019, 0.10649676, 0.63103856, + 0.06864912, 0.38452259, 0.44953274, 0.53725327, 0.75235172, 0.71780644, 0.56919235, + 0.14419679, 0.27101719, 0.03290223, 0.13075588, 0.99856136, 0.76185492, 0.29195496, + 0.45779837, 0.670453, 0.20837162, 0.90747364, 0.53769863, 0.37493214, 0.46571204, + 0.89671548, 0.16910057}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 3, 2, 4})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = { + 0.66670851, 0.18268608, 0.44695419, 0.62334507, 0.80036024, 0.29064084, 0.18206091, + 0.56460621, 0.38879404, 0.11587557, 0.68197836, 0.04929846, 0.09950593, 0.13592194, + 0.53251525, 0.1410435, 0.34868967, 0.52955861, 0.23000012, 0.21518479, 0.46190584, + 0.77691399, 0.33511735, 0.30883835, 0.68201133, 1.15083431, 0.47163549, 0.95135997, + 0.65118898, 0.76828803, 0.35903419, 0.74419669, 0.29249974, 0.05213813, 0.20661094, + 0.01506669, 0.18888767, 0.05065779, 0.14791746, 0.04142444, 0.4169273, 0.91117897, + 0.60564381, 0.56702816, 0.25435799, 0.55599462, 0.36954417, 0.34598853, 0.4330266, + 0.63386583, 0.87316774, 0.74902009, 0.07708401, 0.19862746, 0.26954707, 0.21002016, + 0.65833888, 0.32805091, 0.59215335, 0.66362331, 0.0759047, 0.03931352, 0.06996808, + 0.07691242, 0.82778363, 0.11588374, 0.47065285, 0.54512138, 0.79855421, 0.08825606, + 0.65706819, 0.82788605}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_6_test) +{ + migraphx::program p = read_onnx("einsum_common_6_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 2, 2}}; + std::vector x1_data = {0.05474463, + 0.22797254, + 0.87786654, + 0.5430384, + 0.7145002, + 0.27575673, + 0.74687312, + 0.49764738, + 0.3077794, + 0.83018295, + 0.42118662, + 0.04536079}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {2, 2, 3}}; + std::vector x2_data = {0.51540488, + 0.78670115, + 0.71049908, + 0.51739133, + 0.75638524, + 0.50107731, + 0.15112663, + 0.55976972, + 0.09744345, + 0.63967998, + 0.56295837, + 0.95296606}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 2, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.06266837, + 0.17067979, + 0.06111044, + 0.80157133, + 0.96971331, + 0.95737617, + 0.40993108, + 0.7164584, + 0.53452242, + 0.70476074, + 0.84507857, + 0.84848224, + 0.28409375, + 0.70684169, + 0.29957287, + 0.24693469, + 0.34411558, + 0.25427435}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_7_test) +{ + migraphx::program p = read_onnx("einsum_common_7_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x_shape{migraphx::shape::float_type, {5, 5}}; + std::vector x_data = {0.45661163, 0.49868523, 0.8806857, 0.45253824, 0.61711842, + 0.19736463, 0.55164341, 0.84964635, 0.50090015, 0.49506288, + 0.19423388, 0.76448901, 0.65602353, 0.2169867, 0.99645268, + 0.62749812, 0.67396942, 0.69806385, 0.23727109, 0.23524408, + 0.84425561, 0.67866378, 0.20223278, 0.34088997, 0.22209943}; + + migraphx::parameter_map pm; + pm["x"] = migraphx::argument{x_shape, x_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({5})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {2.90563922, 2.5946174, 2.82818581, 2.47204655, 2.28814157}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} + +TEST_CASE(einsum_common_8_test) +{ + migraphx::program p = read_onnx("einsum_common_8_test.onnx"); + p.compile(migraphx::make_target("ref")); + + migraphx::shape x1_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x1_data = {0.31281588, + 0.34922652, + 0.79181082, + 0.55581571, + 0.34963734, + 0.39777707, + 0.43040396, + 0.19965846, + 0.68818176}; + + migraphx::shape x2_shape{migraphx::shape::float_type, {3, 3}}; + std::vector x2_data = {0.94199384, + 0.06564557, + 0.36439139, + 0.30556677, + 0.25776106, + 0.59531702, + 0.21481152, + 0.09608821, + 0.41203512}; + + migraphx::parameter_map pm; + pm["x1"] = migraphx::argument{x1_shape, x1_data.data()}; + pm["x2"] = migraphx::argument{x2_shape, x2_data.data()}; + + auto result = p.eval(pm).back(); + EXPECT(result.get_shape() == make_shape({3, 3})); + + std::vector result_vector; + result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); }); + + std::vector gold = {0.29467063, + 0.08063175, + 0.12889113, + 0.32935622, + 0.09012289, + 0.14406286, + 0.64826297, + 0.17738646, + 0.28355505}; + EXPECT(migraphx::verify::verify_rms_range(result_vector, gold)); +} diff --git a/test/py/onnx_backend_test.py b/test/py/onnx_backend_test.py index 2d847c97300..431c72b844b 100644 --- a/test/py/onnx_backend_test.py +++ b/test/py/onnx_backend_test.py @@ -112,11 +112,6 @@ def disabled_tests_onnx_1_7_0(backend_test): backend_test.exclude(r'test_det_2d_cpu') backend_test.exclude(r'test_det_nd_cpu') backend_test.exclude(r'test_edge_pad_cpu') - backend_test.exclude(r'test_einsum_batch_diagonal_cpu') - backend_test.exclude(r'test_einsum_batch_matmul_cpu') - backend_test.exclude(r'test_einsum_inner_prod_cpu') - backend_test.exclude(r'test_einsum_sum_cpu') - backend_test.exclude(r'test_einsum_transpose_cpu') backend_test.exclude(r'test_maxunpool_export_with_output_shape_cpu') backend_test.exclude(r'test_maxunpool_export_without_output_shape_cpu') backend_test.exclude(r'test_qlinearmatmul_2D_cpu')