From d1e945dabce0078d44c78de67b00232b856e18bc Mon Sep 17 00:00:00 2001 From: kahmed10 <15948690+kahmed10@users.noreply.github.com> Date: Sat, 7 Mar 2020 20:44:01 -0600 Subject: [PATCH] Add same padding mode for onnx (#456) * fix pad calc * add padding calc and test * formatting * made asym generic function * formatting Co-authored-by: mvermeulen <5479696+mvermeulen@users.noreply.github.com> --- src/onnx/onnx.cpp | 73 ++++++++++++++------------- test/onnx/conv_autopad_same_test.onnx | 25 +++++++++ test/onnx/gen_onnx.py | 16 ++++++ test/onnx/onnx_test.cpp | 14 +++++ 4 files changed, 94 insertions(+), 34 deletions(-) create mode 100644 test/onnx/conv_autopad_same_test.onnx diff --git a/src/onnx/onnx.cpp b/src/onnx/onnx.cpp index 09c96d3a224..28528acf7f6 100644 --- a/src/onnx/onnx.cpp +++ b/src/onnx/onnx.cpp @@ -16,6 +16,7 @@ #include #include #include +#include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { @@ -302,6 +303,24 @@ struct onnx_parser return curr_ins; } + template + void check_asym_padding(instruction_ref& ins, + std::vector& padding, + Op& op, + float pad_val = 0) + { + if(padding[0] != padding[2] || padding[1] != padding[3]) + { + padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}; + ins = prog.add_instruction(op::pad{padding, pad_val}, ins); + } + else + { + op.padding[0] = padding[0]; + op.padding[1] = padding[1]; + } + } + instruction_ref parse_clip(const std::string&, const attribute_map& attributes, std::vector args) @@ -424,7 +443,8 @@ struct onnx_parser parse_conv(const std::string&, attribute_map attributes, std::vector args) { Op op; - auto l0 = args[0]; + auto l0 = args[0]; + auto weights = args[1]; if(contains(attributes, "pads")) { if(contains(attributes, "auto_pad")) @@ -441,17 +461,7 @@ struct onnx_parser { MIGRAPHX_THROW("padding should have 4 values"); } - if(padding[0] != padding[2] || padding[1] != padding[3]) - { - // insert zeros for pad op (args[0] has 4 dims) - padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}; - l0 = prog.add_instruction(op::pad{padding}, l0); - } - else - { - op.padding[0] = padding[0]; - op.padding[1] = padding[1]; - } + check_asym_padding(l0, padding, op); } if(contains(attributes, "strides")) { @@ -471,7 +481,19 @@ struct onnx_parser if(s.find("SAME") != std::string::npos) { - op.padding_mode = op::padding_mode_t::same; + op.padding_mode = op::padding_mode_t::same; + std::vector weight_dims = weights->get_shape().lens(); + size_t weight_h = weight_dims[2]; + size_t weight_w = weight_dims[3]; + + auto input_dims = l0->get_shape().lens(); + std::vector padding(input_dims.size()); + calculate_padding( + 0, padding, input_dims[2], op.stride[0], op.dilation[0], weight_h); + calculate_padding( + 1, padding, input_dims[3], op.stride[1], op.dilation[1], weight_w); + + check_asym_padding(l0, padding, op); } } if(contains(attributes, "group")) @@ -618,27 +640,10 @@ struct onnx_parser { MIGRAPHX_THROW("PARSE_POOLING: padding should have 4 values"); } - if(padding[0] != padding[2] || padding[1] != padding[3]) - { - // insert zeros for pad op (args[0] has 4 dims) - padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]}; - // MaxPool - if(op.mode == "max") - { - l0 = prog.add_instruction( - op::pad{padding, std::numeric_limits::lowest()}, l0); - } - // AveragePool - else - { - l0 = prog.add_instruction(op::pad{padding}, l0); - } - } - else - { - op.padding[0] = padding[0]; - op.padding[1] = padding[1]; - } + float pad_val = 0; + if(op.mode == "max") + pad_val = std::numeric_limits::lowest(); + check_asym_padding(l0, padding, op, pad_val); } if(contains(attributes, "strides")) diff --git a/test/onnx/conv_autopad_same_test.onnx b/test/onnx/conv_autopad_same_test.onnx new file mode 100644 index 00000000000..f87135334f4 --- /dev/null +++ b/test/onnx/conv_autopad_same_test.onnx @@ -0,0 +1,25 @@ +conv_autopad_same_test:» +J +0 +12"Conv* +auto_pad"SAME * + dilations@@ * +strides@@ conv_autopad_same_testZ +0 + + + + + Z +1 + + + + +b +2 + + + + + B \ No newline at end of file diff --git a/test/onnx/gen_onnx.py b/test/onnx/gen_onnx.py index cf30a21613d..2b5fa4f3309 100644 --- a/test/onnx/gen_onnx.py +++ b/test/onnx/gen_onnx.py @@ -492,6 +492,22 @@ def conv_autopad_fail_test(): return ([node], [x, y], [out]) +@onnx_test +def conv_autopad_same_test(): + x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32]) + y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 3, 3, 3]) + out = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 1, 32, 32]) + + node = onnx.helper.make_node('Conv', + inputs=['0', '1'], + outputs=['2'], + dilations=[1, 1], + strides=[1, 1], + auto_pad='SAME') + + return ([node], [x, y], [out]) + + @onnx_test def conv_bias_test(): x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 32, 32]) diff --git a/test/onnx/onnx_test.cpp b/test/onnx/onnx_test.cpp index 4b1ee33332b..ef68cd85025 100644 --- a/test/onnx/onnx_test.cpp +++ b/test/onnx/onnx_test.cpp @@ -341,6 +341,20 @@ TEST_CASE(conv_autopad_fail_test) EXPECT(test::throws([&] { optimize_onnx("conv_autopad_fail_test.onnx"); })); } +TEST_CASE(conv_autopad_same_test) +{ + migraphx::program p; + auto l0 = p.add_parameter("0", {migraphx::shape::float_type, {1, 3, 32, 32}}); + auto l1 = p.add_parameter("1", {migraphx::shape::float_type, {1, 3, 3, 3}}); + migraphx::op::convolution op; + op.padding = {1, 1}; + op.padding_mode = migraphx::op::padding_mode_t::same; + p.add_instruction(op, l0, l1); + + auto prog = optimize_onnx("conv_autopad_same_test.onnx"); + EXPECT(p == prog); +} + TEST_CASE(conv_bias_test) { migraphx::program p;