-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathencoding.py
119 lines (104 loc) · 3.68 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Rachid and Kimia
"""
from gammatone_utils import *
from scikits.talkbox import segment_axis
from scikits.audiolab import Sndfile, play
import matplotlib.pyplot as plt
plt.style.use('ggplot')
def matching_pursuit(signal, dict_kernels, threshold=0.1, max_iter=2000):
"""
Matching pursuit algorithm for encoding
:param signal: input signal
:param dict_kernels: dictionary of kernels, each column is a kernel
:param threshold: stop condition
:param max_iter: maximum number of iterations
:return: array of scalar weighting factor (one per kernel)
"""
# Initialization
res = signal
coeff = np.zeros(dict_kernels.shape[0])
# Iterative decomposition
for i in range(max_iter):
inner_prod = res.dot(dict_kernels.T)
max_kernel = np.argmax(inner_prod)
coeff[max_kernel] = inner_prod[max_kernel] / np.linalg.norm(dict_kernels[max_kernel,: ])**2
res = res - coeff[max_kernel] * dict_kernels[max_kernel,: ]
if np.linalg.norm(res) < threshold:
return coeff
return coeff
# Parametrization
b = 1.019
resolution = 160
step = 8
n_channels = 128
overlap = 50
# Compute gammatone-based dictionary
D_multi = np.r_[tuple(gammatone_matrix(b, fc, resolution, step)[0] for
fc in erb_space(150, 8000, n_channels))]
freq_c = np.array([gammatone_matrix(b, fc, resolution, step)[1] for
fc in erb_space(150, 8000, n_channels)]).flatten()
centers = np.array([gammatone_matrix(b, fc, resolution, step)[2] + i*resolution for
i, fc in enumerate(erb_space(150, 8000, n_channels))]).flatten()
# Load test signal
filename = 'data/fsew/fsew0_001.wav'
f = Sndfile(filename, 'r')
nf = f.nframes
fs = f.samplerate
length_sound = 20000
y = f.read_frames(5000)
y = f.read_frames(length_sound)
Y = segment_axis(y, resolution, overlap=overlap, end='pad')
Y = np.hanning(resolution) * Y
# Encoding with matching pursuit
X = np.zeros((Y.shape[0],D_multi.shape[0]))
for idx in range(Y.shape[0]):
X[idx, :] = matching_pursuit(Y[idx, :], D_multi)
# Reconstruction of the signal
out = np.zeros(int((np.ceil(len(y)/resolution)+1)*resolution))
for k in range(0, len(X)):
idx = range(k*(resolution-overlap), k*(resolution-overlap) + resolution)
out[idx] += np.dot(X[k], D_multi)
squared_error = np.sum((y - out[0:len(y)]) ** 2)
# Play the original signal and the reconstructed for comparison
play(y, fs=16000)
play(out, fs=16000)
# Plotting results
# 1st plot: original signal/reconstructed signal/residuals
arr = np.array(range(length_sound))/float(fs)
plt.figure(1)
plt.subplot(311)
plt.plot(arr, y, 'b', label="Input Signal")
plt.legend()
plt.subplot(312)
plt.plot(arr, out[0:len(y)], 'r', label="Recontruction")
plt.legend()
plt.subplot(313)
plt.plot(arr, (y - out[0:len(y)])**2, 'g', label="Residual")
plt.legend()
plt.xlabel("Time in s")
plt.show()
# 2nd plot: spike train
plt.figure(2)
spikes_pos = np.array(np.nonzero(X))
temporal_position = centers[spikes_pos[0][:]]
centre_freq = freq_c[spikes_pos[1][:]]
plt.scatter(temporal_position, centre_freq, marker='+', s=1)
plt.show()
# 3rd plot: example of gammatone-based dictionary
fig = plt.figure(3)
fig.suptitle("Gammatone filters", fontsize="x-large")
freqs = [1000, 300, 40]
resolution = 5000
for center in [100, 1500, 3000]:
plt.subplot(311)
plt.plot(gammatone_function(resolution, freqs[0], center), linewidth=1.5)
plt.subplot(312)
plt.plot(gammatone_function(resolution, freqs[1], center+300), linewidth=1.5)
plt.ylabel("Kernel values")
plt.subplot(313)
plt.plot(gammatone_function(resolution, freqs[2], center+1000), linewidth=1.5)
plt.xlabel("Time (s)")
plt.show()