-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnaivefusion.py
59 lines (51 loc) · 2.18 KB
/
naivefusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage, misc
import image
#def div0( a, b ):
# """ ignore / 0, div0( [-1, 0, 1], 0 ) -> [0, 0, 0] """
# with np.errstate(divide='ignore', invalid='ignore'):
# c = np.true_divide( a, b )
# c[ ~ np.isfinite( c )] = 0
# return c
class WeightsMap(object):
"""Class for weights attribution for all images"""
def __init__(self, fmt, names):
"""names is a liste of names, fmt is the format of the images"""
self.images = []
for name in names:
self.images.append(image.Image(fmt, name))
self.shape = self.images[0].shape
self.num_images = len(self.images)
def get_weights_map(self, w_c, w_s, w_e):
"""Return the normalized Weight map"""
self.weights = []
sums = np.zeros((self.shape[0], self.shape[1]))
for image_name in self.images:
contrast = image_name.contrast()
saturation = image_name.saturation()
exposedness = image_name.exposedness()
weight = (contrast**w_c)*(saturation**w_s)*(exposedness**w_e) + 1e-12
# weight = ndimage.gaussian_filter(weight, sigma=(3, 3), order=0)
self.weights.append(weight)
sums = sums + weight
for index in range(self.num_images):
self.weights[index] = self.weights[index]/sums
return self.weights
def result_exposure(self, w_c=1, w_s=1, w_e=1):
"Return the Exposure Fusion image with Naive method"
self.get_weights_map(w_c, w_s, w_e)
self.result_image = np.zeros(self.shape)
for canal in range(3):
for index in range(self.num_images):
self.result_image[:, :, canal] += self.weights[index] * self.images[index].array[:, :, canal]
self.result_image[self.result_image < 0] = 0
self.result_image[self.result_image > 1] = 1
return self.result_image
if __name__ == "__main__":
names = [line.rstrip('\n') for line in open('list_jpeg_test.txt')]
W = WeightsMap("mask", names)
im = W.result_exposure(1, 1, 1)
image.show(im)
misc.imsave("res/mask_naive.jpg", im)