-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmod_arith_32bit.h
executable file
·136 lines (122 loc) · 5.18 KB
/
mod_arith_32bit.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/* Copyright (C) 2010 The Trustees of Indiana University. */
/* */
/* Use, modification and distribution is subject to the Boost Software */
/* License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at */
/* http://www.boost.org/LICENSE_1_0.txt) */
/* */
/* Authors: Jeremiah Willcock */
/* Andrew Lumsdaine */
#ifndef MOD_ARITH_32BIT_H
#define MOD_ARITH_32BIT_H
#include <stdint.h>
#include <assert.h>
/* Various modular arithmetic operations for modulus 2^31-1 (0x7FFFFFFF).
* These may need to be tweaked to get acceptable performance on some platforms
* (especially ones without conditional moves). */
static inline uint_fast32_t mod_add(uint_fast32_t a, uint_fast32_t b) {
uint_fast32_t x;
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
#if 0
return (a + b) % 0x7FFFFFFF;
#else
x = a + b; /* x <= 0xFFFFFFFC */
x = (x >= 0x7FFFFFFF) ? (x - 0x7FFFFFFF) : x;
return x;
#endif
}
static inline uint_fast32_t mod_mul(uint_fast32_t a, uint_fast32_t b) {
uint_fast64_t temp;
uint_fast32_t temp2;
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
#if 0
return (uint_fast32_t)((uint_fast64_t)a * b % 0x7FFFFFFF);
#else
temp = (uint_fast64_t)a * b; /* temp <= 0x3FFFFFFE00000004 */
temp2 = (uint_fast32_t)(temp & 0x7FFFFFFF) + (uint_fast32_t)(temp >> 31); /* temp2 <= 0xFFFFFFFB */
return (temp2 >= 0x7FFFFFFF) ? (temp2 - 0x7FFFFFFF) : temp2;
#endif
}
static inline uint_fast32_t mod_mac(uint_fast32_t sum, uint_fast32_t a, uint_fast32_t b) {
uint_fast64_t temp;
uint_fast32_t temp2;
assert (sum <= 0x7FFFFFFE);
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
#if 0
return (uint_fast32_t)(((uint_fast64_t)a * b + sum) % 0x7FFFFFFF);
#else
temp = (uint_fast64_t)a * b + sum; /* temp <= 0x3FFFFFFE80000002 */
temp2 = (uint_fast32_t)(temp & 0x7FFFFFFF) + (uint_fast32_t)(temp >> 31); /* temp2 <= 0xFFFFFFFC */
return (temp2 >= 0x7FFFFFFF) ? (temp2 - 0x7FFFFFFF) : temp2;
#endif
}
static inline uint_fast32_t mod_mac2(uint_fast32_t sum, uint_fast32_t a, uint_fast32_t b, uint_fast32_t c, uint_fast32_t d) {
assert (sum <= 0x7FFFFFFE);
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
assert (c <= 0x7FFFFFFE);
assert (d <= 0x7FFFFFFE);
return mod_mac(mod_mac(sum, a, b), c, d);
}
static inline uint_fast32_t mod_mac3(uint_fast32_t sum, uint_fast32_t a, uint_fast32_t b, uint_fast32_t c, uint_fast32_t d, uint_fast32_t e, uint_fast32_t f) {
assert (sum <= 0x7FFFFFFE);
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
assert (c <= 0x7FFFFFFE);
assert (d <= 0x7FFFFFFE);
assert (e <= 0x7FFFFFFE);
assert (f <= 0x7FFFFFFE);
return mod_mac2(mod_mac(sum, a, b), c, d, e, f);
}
static inline uint_fast32_t mod_mac4(uint_fast32_t sum, uint_fast32_t a, uint_fast32_t b, uint_fast32_t c, uint_fast32_t d, uint_fast32_t e, uint_fast32_t f, uint_fast32_t g, uint_fast32_t h) {
assert (sum <= 0x7FFFFFFE);
assert (a <= 0x7FFFFFFE);
assert (b <= 0x7FFFFFFE);
assert (c <= 0x7FFFFFFE);
assert (d <= 0x7FFFFFFE);
assert (e <= 0x7FFFFFFE);
assert (f <= 0x7FFFFFFE);
assert (g <= 0x7FFFFFFE);
assert (h <= 0x7FFFFFFE);
return mod_mac2(mod_mac2(sum, a, b, c, d), e, f, g, h);
}
/* The two constants x and y are special cases because they are easier to
* multiply by on 32-bit systems. They are used as multipliers in the random
* number generator. The techniques for fast multiplication by these
* particular values are from:
*
* Pierre L'Ecuyer, Francois Blouin, and Raymond Couture. 1993. A search
* for good multiple recursive random number generators. ACM Trans. Model.
* Comput. Simul. 3, 2 (April 1993), 87-98. DOI=10.1145/169702.169698
* http://doi.acm.org/10.1145/169702.169698
*
* Pierre L'Ecuyer. 1990. Random numbers for simulation. Commun. ACM 33, 10
* (October 1990), 85-97. DOI=10.1145/84537.84555
* http://doi.acm.org/10.1145/84537.84555
*/
static inline uint_fast32_t mod_mul_x(uint_fast32_t a) {
static const int32_t q = 20 /* UINT32_C(0x7FFFFFFF) / 107374182 */;
static const int32_t r = 7 /* UINT32_C(0x7FFFFFFF) % 107374182 */;
int_fast32_t result = (int_fast32_t)(a) / q;
result = 107374182 * ((int_fast32_t)(a) - result * q) - result * r;
result += (result < 0 ? 0x7FFFFFFF : 0);
assert ((uint_fast32_t)(result) == mod_mul(a, 107374182));
return (uint_fast32_t)result;
}
static inline uint_fast32_t mod_mul_y(uint_fast32_t a) {
static const int32_t q = 20554 /* UINT32_C(0x7FFFFFFF) / 104480 */;
static const int32_t r = 1727 /* UINT32_C(0x7FFFFFFF) % 104480 */;
int_fast32_t result = (int_fast32_t)(a) / q;
result = 104480 * ((int_fast32_t)(a) - result * q) - result * r;
result += (result < 0 ? 0x7FFFFFFF : 0);
assert ((uint_fast32_t)(result) == mod_mul(a, 104480));
return (uint_fast32_t)result;
}
static inline uint_fast32_t mod_mac_y(uint_fast32_t sum, uint_fast32_t a) {
uint_fast32_t result = mod_add(sum, mod_mul_y(a));
assert (result == mod_mac(sum, a, 104480));
return result;
}
#endif /* MOD_ARITH_32BIT_H */